Solve for x, y
x=-4
y=7
Graph
Share
Copied to clipboard
2x+3y=13,\frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(y+1\right)=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=13
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+13
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+13\right)
Divide both sides by 2.
x=-\frac{3}{2}y+\frac{13}{2}
Multiply \frac{1}{2} times -3y+13.
\frac{1}{3}\left(2\left(-\frac{3}{2}y+\frac{13}{2}\right)-1\right)+\frac{1}{2}\left(y+1\right)=1
Substitute \frac{-3y+13}{2} for x in the other equation, \frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(y+1\right)=1.
\frac{1}{3}\left(-3y+13-1\right)+\frac{1}{2}\left(y+1\right)=1
Multiply 2 times \frac{-3y+13}{2}.
\frac{1}{3}\left(-3y+12\right)+\frac{1}{2}\left(y+1\right)=1
Add 13 to -1.
-y+4+\frac{1}{2}\left(y+1\right)=1
Multiply \frac{1}{3} times -3y+12.
-y+4+\frac{1}{2}y+\frac{1}{2}=1
Multiply \frac{1}{2} times y+1.
-\frac{1}{2}y+4+\frac{1}{2}=1
Add -y to \frac{y}{2}.
-\frac{1}{2}y+\frac{9}{2}=1
Add 4 to \frac{1}{2}.
-\frac{1}{2}y=-\frac{7}{2}
Subtract \frac{9}{2} from both sides of the equation.
y=7
Multiply both sides by -2.
x=-\frac{3}{2}\times 7+\frac{13}{2}
Substitute 7 for y in x=-\frac{3}{2}y+\frac{13}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-21+13}{2}
Multiply -\frac{3}{2} times 7.
x=-4
Add \frac{13}{2} to -\frac{21}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-4,y=7
The system is now solved.
2x+3y=13,\frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(y+1\right)=1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{3}\left(2x-1\right)+\frac{1}{2}\left(y+1\right)=1
Simplify the second equation to put it in standard form.
\frac{2}{3}x-\frac{1}{3}+\frac{1}{2}\left(y+1\right)=1
Multiply \frac{1}{3} times 2x-1.
\frac{2}{3}x-\frac{1}{3}+\frac{1}{2}y+\frac{1}{2}=1
Multiply \frac{1}{2} times y+1.
\frac{2}{3}x+\frac{1}{2}y+\frac{1}{6}=1
Add -\frac{1}{3} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{2}{3}x+\frac{1}{2}y=\frac{5}{6}
Subtract \frac{1}{6} from both sides of the equation.
\left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\\frac{5}{6}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}13\\\frac{5}{6}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}13\\\frac{5}{6}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}13\\\frac{5}{6}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{2\times \frac{1}{2}-3\times \frac{2}{3}}&-\frac{3}{2\times \frac{1}{2}-3\times \frac{2}{3}}\\-\frac{\frac{2}{3}}{2\times \frac{1}{2}-3\times \frac{2}{3}}&\frac{2}{2\times \frac{1}{2}-3\times \frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}13\\\frac{5}{6}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&3\\\frac{2}{3}&-2\end{matrix}\right)\left(\begin{matrix}13\\\frac{5}{6}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 13+3\times \frac{5}{6}\\\frac{2}{3}\times 13-2\times \frac{5}{6}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
Do the arithmetic.
x=-4,y=7
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}