Solve for x, y, z
x=-\frac{282}{2147}\approx -0.131346064
y = \frac{7867}{2147} = 3\frac{1426}{2147} \approx 3.66418258
z = -\frac{8008}{2147} = -3\frac{1567}{2147} \approx -3.729855612
Share
Copied to clipboard
z=-2x-3y+7
Solve 2x+3y+z=7 for z.
536x-2y-\left(-2x-3y+7\right)=-74 3x+y-\left(-2x-3y+7\right)=7
Substitute -2x-3y+7 for z in the second and third equation.
y=-538x-67 x=\frac{14}{5}-\frac{4}{5}y
Solve these equations for y and x respectively.
x=\frac{14}{5}-\frac{4}{5}\left(-538x-67\right)
Substitute -538x-67 for y in the equation x=\frac{14}{5}-\frac{4}{5}y.
x=-\frac{282}{2147}
Solve x=\frac{14}{5}-\frac{4}{5}\left(-538x-67\right) for x.
y=-538\left(-\frac{282}{2147}\right)-67
Substitute -\frac{282}{2147} for x in the equation y=-538x-67.
y=\frac{7867}{2147}
Calculate y from y=-538\left(-\frac{282}{2147}\right)-67.
z=-2\left(-\frac{282}{2147}\right)-3\times \frac{7867}{2147}+7
Substitute \frac{7867}{2147} for y and -\frac{282}{2147} for x in the equation z=-2x-3y+7.
z=-\frac{8008}{2147}
Calculate z from z=-2\left(-\frac{282}{2147}\right)-3\times \frac{7867}{2147}+7.
x=-\frac{282}{2147} y=\frac{7867}{2147} z=-\frac{8008}{2147}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}