Solve for x, y, z
x = \frac{187}{57} = 3\frac{16}{57} \approx 3.280701754
y = -\frac{137}{57} = -2\frac{23}{57} \approx -2.403508772
z=\frac{52}{57}\approx 0.912280702
Share
Copied to clipboard
x-2y+z=9 2x+3y+4z=3 5x+y-2=12
Reorder the equations.
x=2y-z+9
Solve x-2y+z=9 for x.
2\left(2y-z+9\right)+3y+4z=3 5\left(2y-z+9\right)+y-2=12
Substitute 2y-z+9 for x in the second and third equation.
y=-\frac{2}{7}z-\frac{15}{7} z=\frac{31}{5}+\frac{11}{5}y
Solve these equations for y and z respectively.
z=\frac{31}{5}+\frac{11}{5}\left(-\frac{2}{7}z-\frac{15}{7}\right)
Substitute -\frac{2}{7}z-\frac{15}{7} for y in the equation z=\frac{31}{5}+\frac{11}{5}y.
z=\frac{52}{57}
Solve z=\frac{31}{5}+\frac{11}{5}\left(-\frac{2}{7}z-\frac{15}{7}\right) for z.
y=-\frac{2}{7}\times \frac{52}{57}-\frac{15}{7}
Substitute \frac{52}{57} for z in the equation y=-\frac{2}{7}z-\frac{15}{7}.
y=-\frac{137}{57}
Calculate y from y=-\frac{2}{7}\times \frac{52}{57}-\frac{15}{7}.
x=2\left(-\frac{137}{57}\right)-\frac{52}{57}+9
Substitute -\frac{137}{57} for y and \frac{52}{57} for z in the equation x=2y-z+9.
x=\frac{187}{57}
Calculate x from x=2\left(-\frac{137}{57}\right)-\frac{52}{57}+9.
x=\frac{187}{57} y=-\frac{137}{57} z=\frac{52}{57}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}