Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x-2y+z=9 2x+3y+4z=3 5x+y-2=12
Reorder the equations.
x=2y-z+9
Solve x-2y+z=9 for x.
2\left(2y-z+9\right)+3y+4z=3 5\left(2y-z+9\right)+y-2=12
Substitute 2y-z+9 for x in the second and third equation.
y=-\frac{2}{7}z-\frac{15}{7} z=\frac{31}{5}+\frac{11}{5}y
Solve these equations for y and z respectively.
z=\frac{31}{5}+\frac{11}{5}\left(-\frac{2}{7}z-\frac{15}{7}\right)
Substitute -\frac{2}{7}z-\frac{15}{7} for y in the equation z=\frac{31}{5}+\frac{11}{5}y.
z=\frac{52}{57}
Solve z=\frac{31}{5}+\frac{11}{5}\left(-\frac{2}{7}z-\frac{15}{7}\right) for z.
y=-\frac{2}{7}\times \frac{52}{57}-\frac{15}{7}
Substitute \frac{52}{57} for z in the equation y=-\frac{2}{7}z-\frac{15}{7}.
y=-\frac{137}{57}
Calculate y from y=-\frac{2}{7}\times \frac{52}{57}-\frac{15}{7}.
x=2\left(-\frac{137}{57}\right)-\frac{52}{57}+9
Substitute -\frac{137}{57} for y and \frac{52}{57} for z in the equation x=2y-z+9.
x=\frac{187}{57}
Calculate x from x=2\left(-\frac{137}{57}\right)-\frac{52}{57}+9.
x=\frac{187}{57} y=-\frac{137}{57} z=\frac{52}{57}
The system is now solved.