Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+3\left(y-6\right)=0,3x-4\left(-y+2\right)=19
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3\left(y-6\right)=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x+3y-18=0
Multiply 3 times y-6.
2x+3y=18
Add 18 to both sides of the equation.
2x=-3y+18
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+18\right)
Divide both sides by 2.
x=-\frac{3}{2}y+9
Multiply \frac{1}{2} times -3y+18.
3\left(-\frac{3}{2}y+9\right)-4\left(-y+2\right)=19
Substitute -\frac{3y}{2}+9 for x in the other equation, 3x-4\left(-y+2\right)=19.
-\frac{9}{2}y+27-4\left(-y+2\right)=19
Multiply 3 times -\frac{3y}{2}+9.
-\frac{9}{2}y+27+4y-8=19
Multiply -4 times -y+2.
-\frac{1}{2}y+27-8=19
Add -\frac{9y}{2} to 4y.
-\frac{1}{2}y+19=19
Add 27 to -8.
-\frac{1}{2}y=0
Subtract 19 from both sides of the equation.
y=0
Multiply both sides by -2.
x=9
Substitute 0 for y in x=-\frac{3}{2}y+9. Because the resulting equation contains only one variable, you can solve for x directly.
x=9,y=0
The system is now solved.
2x+3\left(y-6\right)=0,3x-4\left(-y+2\right)=19
Put the equations in standard form and then use matrices to solve the system of equations.
2x+3\left(y-6\right)=0
Simplify the first equation to put it in standard form.
2x+3y-18=0
Multiply 3 times y-6.
2x+3y=18
Add 18 to both sides of the equation.
3x-4\left(-y+2\right)=19
Simplify the second equation to put it in standard form.
3x+4y-8=19
Multiply -4 times -y+2.
3x+4y=27
Add 8 to both sides of the equation.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\27\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 18+3\times 27\\3\times 18-2\times 27\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\0\end{matrix}\right)
Do the arithmetic.
x=9,y=0
Extract the matrix elements x and y.