Solve for x, y, z
x=90
y=120
z=180
Share
Copied to clipboard
2x+y+2z=660 2x+2y+1z=600 3x+2y+2z=870
Reorder the equations.
y=660-2x-2z
Solve 2x+y+2z=660 for y.
2x+2\left(660-2x-2z\right)+1z=600 3x+2\left(660-2x-2z\right)+2z=870
Substitute 660-2x-2z for y in the second and third equation.
x=360-\frac{3}{2}z z=-\frac{1}{2}x+225
Solve these equations for x and z respectively.
z=-\frac{1}{2}\left(360-\frac{3}{2}z\right)+225
Substitute 360-\frac{3}{2}z for x in the equation z=-\frac{1}{2}x+225.
z=180
Solve z=-\frac{1}{2}\left(360-\frac{3}{2}z\right)+225 for z.
x=360-\frac{3}{2}\times 180
Substitute 180 for z in the equation x=360-\frac{3}{2}z.
x=90
Calculate x from x=360-\frac{3}{2}\times 180.
y=660-2\times 90-2\times 180
Substitute 90 for x and 180 for z in the equation y=660-2x-2z.
y=120
Calculate y from y=660-2\times 90-2\times 180.
x=90 y=120 z=180
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}