Solve for x, y, z
x=40
y=6
z=6
Share
Copied to clipboard
x+y+z=52 2x+12y+20z=272 2x+12y+z=158
Reorder the equations.
x=-y-z+52
Solve x+y+z=52 for x.
2\left(-y-z+52\right)+12y+20z=272 2\left(-y-z+52\right)+12y+z=158
Substitute -y-z+52 for x in the second and third equation.
y=\frac{84}{5}-\frac{9}{5}z z=10y-54
Solve these equations for y and z respectively.
z=10\left(\frac{84}{5}-\frac{9}{5}z\right)-54
Substitute \frac{84}{5}-\frac{9}{5}z for y in the equation z=10y-54.
z=6
Solve z=10\left(\frac{84}{5}-\frac{9}{5}z\right)-54 for z.
y=\frac{84}{5}-\frac{9}{5}\times 6
Substitute 6 for z in the equation y=\frac{84}{5}-\frac{9}{5}z.
y=6
Calculate y from y=\frac{84}{5}-\frac{9}{5}\times 6.
x=-6-6+52
Substitute 6 for y and 6 for z in the equation x=-y-z+52.
x=40
Calculate x from x=-6-6+52.
x=40 y=6 z=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}