Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

5x+6y+z=3 2x+10y-3z=-1 6x+3y+2z=8
Reorder the equations.
z=-5x-6y+3
Solve 5x+6y+z=3 for z.
2x+10y-3\left(-5x-6y+3\right)=-1 6x+3y+2\left(-5x-6y+3\right)=8
Substitute -5x-6y+3 for z in the second and third equation.
y=-\frac{17}{28}x+\frac{2}{7} x=-\frac{9}{4}y-\frac{1}{2}
Solve these equations for y and x respectively.
x=-\frac{9}{4}\left(-\frac{17}{28}x+\frac{2}{7}\right)-\frac{1}{2}
Substitute -\frac{17}{28}x+\frac{2}{7} for y in the equation x=-\frac{9}{4}y-\frac{1}{2}.
x=\frac{128}{41}
Solve x=-\frac{9}{4}\left(-\frac{17}{28}x+\frac{2}{7}\right)-\frac{1}{2} for x.
y=-\frac{17}{28}\times \frac{128}{41}+\frac{2}{7}
Substitute \frac{128}{41} for x in the equation y=-\frac{17}{28}x+\frac{2}{7}.
y=-\frac{66}{41}
Calculate y from y=-\frac{17}{28}\times \frac{128}{41}+\frac{2}{7}.
z=-5\times \frac{128}{41}-6\left(-\frac{66}{41}\right)+3
Substitute -\frac{66}{41} for y and \frac{128}{41} for x in the equation z=-5x-6y+3.
z=-\frac{121}{41}
Calculate z from z=-5\times \frac{128}{41}-6\left(-\frac{66}{41}\right)+3.
x=\frac{128}{41} y=-\frac{66}{41} z=-\frac{121}{41}
The system is now solved.