Solve for x, y, z
x = \frac{128}{41} = 3\frac{5}{41} \approx 3.12195122
y = -\frac{66}{41} = -1\frac{25}{41} \approx -1.609756098
z = -\frac{121}{41} = -2\frac{39}{41} \approx -2.951219512
Share
Copied to clipboard
5x+6y+z=3 2x+10y-3z=-1 6x+3y+2z=8
Reorder the equations.
z=-5x-6y+3
Solve 5x+6y+z=3 for z.
2x+10y-3\left(-5x-6y+3\right)=-1 6x+3y+2\left(-5x-6y+3\right)=8
Substitute -5x-6y+3 for z in the second and third equation.
y=-\frac{17}{28}x+\frac{2}{7} x=-\frac{9}{4}y-\frac{1}{2}
Solve these equations for y and x respectively.
x=-\frac{9}{4}\left(-\frac{17}{28}x+\frac{2}{7}\right)-\frac{1}{2}
Substitute -\frac{17}{28}x+\frac{2}{7} for y in the equation x=-\frac{9}{4}y-\frac{1}{2}.
x=\frac{128}{41}
Solve x=-\frac{9}{4}\left(-\frac{17}{28}x+\frac{2}{7}\right)-\frac{1}{2} for x.
y=-\frac{17}{28}\times \frac{128}{41}+\frac{2}{7}
Substitute \frac{128}{41} for x in the equation y=-\frac{17}{28}x+\frac{2}{7}.
y=-\frac{66}{41}
Calculate y from y=-\frac{17}{28}\times \frac{128}{41}+\frac{2}{7}.
z=-5\times \frac{128}{41}-6\left(-\frac{66}{41}\right)+3
Substitute -\frac{66}{41} for y and \frac{128}{41} for x in the equation z=-5x-6y+3.
z=-\frac{121}{41}
Calculate z from z=-5\times \frac{128}{41}-6\left(-\frac{66}{41}\right)+3.
x=\frac{128}{41} y=-\frac{66}{41} z=-\frac{121}{41}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}