Solve for w, n
w=1050
n=2950
Share
Copied to clipboard
2w+n=5050,3w+2n=9050
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2w+n=5050
Choose one of the equations and solve it for w by isolating w on the left hand side of the equal sign.
2w=-n+5050
Subtract n from both sides of the equation.
w=\frac{1}{2}\left(-n+5050\right)
Divide both sides by 2.
w=-\frac{1}{2}n+2525
Multiply \frac{1}{2} times -n+5050.
3\left(-\frac{1}{2}n+2525\right)+2n=9050
Substitute -\frac{n}{2}+2525 for w in the other equation, 3w+2n=9050.
-\frac{3}{2}n+7575+2n=9050
Multiply 3 times -\frac{n}{2}+2525.
\frac{1}{2}n+7575=9050
Add -\frac{3n}{2} to 2n.
\frac{1}{2}n=1475
Subtract 7575 from both sides of the equation.
n=2950
Multiply both sides by 2.
w=-\frac{1}{2}\times 2950+2525
Substitute 2950 for n in w=-\frac{1}{2}n+2525. Because the resulting equation contains only one variable, you can solve for w directly.
w=-1475+2525
Multiply -\frac{1}{2} times 2950.
w=1050
Add 2525 to -1475.
w=1050,n=2950
The system is now solved.
2w+n=5050,3w+2n=9050
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}w\\n\end{matrix}\right)=\left(\begin{matrix}5050\\9050\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}w\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}5050\\9050\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}w\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}5050\\9050\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}w\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}5050\\9050\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}w\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{1}{2\times 2-3}\\-\frac{3}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}5050\\9050\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}w\\n\end{matrix}\right)=\left(\begin{matrix}2&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}5050\\9050\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}w\\n\end{matrix}\right)=\left(\begin{matrix}2\times 5050-9050\\-3\times 5050+2\times 9050\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}w\\n\end{matrix}\right)=\left(\begin{matrix}1050\\2950\end{matrix}\right)
Do the arithmetic.
w=1050,n=2950
Extract the matrix elements w and n.
2w+n=5050,3w+2n=9050
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2w+3n=3\times 5050,2\times 3w+2\times 2n=2\times 9050
To make 2w and 3w equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6w+3n=15150,6w+4n=18100
Simplify.
6w-6w+3n-4n=15150-18100
Subtract 6w+4n=18100 from 6w+3n=15150 by subtracting like terms on each side of the equal sign.
3n-4n=15150-18100
Add 6w to -6w. Terms 6w and -6w cancel out, leaving an equation with only one variable that can be solved.
-n=15150-18100
Add 3n to -4n.
-n=-2950
Add 15150 to -18100.
n=2950
Divide both sides by -1.
3w+2\times 2950=9050
Substitute 2950 for n in 3w+2n=9050. Because the resulting equation contains only one variable, you can solve for w directly.
3w+5900=9050
Multiply 2 times 2950.
3w=3150
Subtract 5900 from both sides of the equation.
w=1050
Divide both sides by 3.
w=1050,n=2950
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}