Solve for m, n
m = \frac{5}{2} = 2\frac{1}{2} = 2.5
n=5
Share
Copied to clipboard
2m=5
Consider the first equation. Add 5 to both sides. Anything plus zero gives itself.
m=\frac{5}{2}
Divide both sides by 2.
2\times \frac{5}{2}-5n+20=0
Consider the second equation. Insert the known values of variables into the equation.
5-5n+20=0
Multiply 2 and \frac{5}{2} to get 5.
25-5n=0
Add 5 and 20 to get 25.
-5n=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
n=\frac{-25}{-5}
Divide both sides by -5.
n=5
Divide -25 by -5 to get 5.
m=\frac{5}{2} n=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}