Skip to main content
Solve for b, v
Tick mark Image

Similar Problems from Web Search

Share

2b+2v=10,5b+4v=23
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2b+2v=10
Choose one of the equations and solve it for b by isolating b on the left hand side of the equal sign.
2b=-2v+10
Subtract 2v from both sides of the equation.
b=\frac{1}{2}\left(-2v+10\right)
Divide both sides by 2.
b=-v+5
Multiply \frac{1}{2} times -2v+10.
5\left(-v+5\right)+4v=23
Substitute -v+5 for b in the other equation, 5b+4v=23.
-5v+25+4v=23
Multiply 5 times -v+5.
-v+25=23
Add -5v to 4v.
-v=-2
Subtract 25 from both sides of the equation.
v=2
Divide both sides by -1.
b=-2+5
Substitute 2 for v in b=-v+5. Because the resulting equation contains only one variable, you can solve for b directly.
b=3
Add 5 to -2.
b=3,v=2
The system is now solved.
2b+2v=10,5b+4v=23
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&2\\5&4\end{matrix}\right)\left(\begin{matrix}b\\v\end{matrix}\right)=\left(\begin{matrix}10\\23\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&2\\5&4\end{matrix}\right))\left(\begin{matrix}2&2\\5&4\end{matrix}\right)\left(\begin{matrix}b\\v\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\5&4\end{matrix}\right))\left(\begin{matrix}10\\23\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&2\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\v\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\5&4\end{matrix}\right))\left(\begin{matrix}10\\23\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}b\\v\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\5&4\end{matrix}\right))\left(\begin{matrix}10\\23\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}b\\v\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-2\times 5}&-\frac{2}{2\times 4-2\times 5}\\-\frac{5}{2\times 4-2\times 5}&\frac{2}{2\times 4-2\times 5}\end{matrix}\right)\left(\begin{matrix}10\\23\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}b\\v\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{5}{2}&-1\end{matrix}\right)\left(\begin{matrix}10\\23\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}b\\v\end{matrix}\right)=\left(\begin{matrix}-2\times 10+23\\\frac{5}{2}\times 10-23\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}b\\v\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Do the arithmetic.
b=3,v=2
Extract the matrix elements b and v.
2b+2v=10,5b+4v=23
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 2b+5\times 2v=5\times 10,2\times 5b+2\times 4v=2\times 23
To make 2b and 5b equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 2.
10b+10v=50,10b+8v=46
Simplify.
10b-10b+10v-8v=50-46
Subtract 10b+8v=46 from 10b+10v=50 by subtracting like terms on each side of the equal sign.
10v-8v=50-46
Add 10b to -10b. Terms 10b and -10b cancel out, leaving an equation with only one variable that can be solved.
2v=50-46
Add 10v to -8v.
2v=4
Add 50 to -46.
v=2
Divide both sides by 2.
5b+4\times 2=23
Substitute 2 for v in 5b+4v=23. Because the resulting equation contains only one variable, you can solve for b directly.
5b+8=23
Multiply 4 times 2.
5b=15
Subtract 8 from both sides of the equation.
b=3
Divide both sides by 5.
b=3,v=2
The system is now solved.