Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

2a+b=420,11a+5b=1848
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a+b=420
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=-b+420
Subtract b from both sides of the equation.
a=\frac{1}{2}\left(-b+420\right)
Divide both sides by 2.
a=-\frac{1}{2}b+210
Multiply \frac{1}{2} times -b+420.
11\left(-\frac{1}{2}b+210\right)+5b=1848
Substitute -\frac{b}{2}+210 for a in the other equation, 11a+5b=1848.
-\frac{11}{2}b+2310+5b=1848
Multiply 11 times -\frac{b}{2}+210.
-\frac{1}{2}b+2310=1848
Add -\frac{11b}{2} to 5b.
-\frac{1}{2}b=-462
Subtract 2310 from both sides of the equation.
b=924
Multiply both sides by -2.
a=-\frac{1}{2}\times 924+210
Substitute 924 for b in a=-\frac{1}{2}b+210. Because the resulting equation contains only one variable, you can solve for a directly.
a=-462+210
Multiply -\frac{1}{2} times 924.
a=-252
Add 210 to -462.
a=-252,b=924
The system is now solved.
2a+b=420,11a+5b=1848
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\11&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}420\\1848\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\11&5\end{matrix}\right))\left(\begin{matrix}2&1\\11&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\11&5\end{matrix}\right))\left(\begin{matrix}420\\1848\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\11&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\11&5\end{matrix}\right))\left(\begin{matrix}420\\1848\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\11&5\end{matrix}\right))\left(\begin{matrix}420\\1848\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-11}&-\frac{1}{2\times 5-11}\\-\frac{11}{2\times 5-11}&\frac{2}{2\times 5-11}\end{matrix}\right)\left(\begin{matrix}420\\1848\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-5&1\\11&-2\end{matrix}\right)\left(\begin{matrix}420\\1848\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-5\times 420+1848\\11\times 420-2\times 1848\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-252\\924\end{matrix}\right)
Do the arithmetic.
a=-252,b=924
Extract the matrix elements a and b.
2a+b=420,11a+5b=1848
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11\times 2a+11b=11\times 420,2\times 11a+2\times 5b=2\times 1848
To make 2a and 11a equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 2.
22a+11b=4620,22a+10b=3696
Simplify.
22a-22a+11b-10b=4620-3696
Subtract 22a+10b=3696 from 22a+11b=4620 by subtracting like terms on each side of the equal sign.
11b-10b=4620-3696
Add 22a to -22a. Terms 22a and -22a cancel out, leaving an equation with only one variable that can be solved.
b=4620-3696
Add 11b to -10b.
b=924
Add 4620 to -3696.
11a+5\times 924=1848
Substitute 924 for b in 11a+5b=1848. Because the resulting equation contains only one variable, you can solve for a directly.
11a+4620=1848
Multiply 5 times 924.
11a=-2772
Subtract 4620 from both sides of the equation.
a=-252
Divide both sides by 11.
a=-252,b=924
The system is now solved.