Solve for a, b
a=2
b=7
Share
Copied to clipboard
2a+7b=53,6a-5b=-23
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a+7b=53
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=-7b+53
Subtract 7b from both sides of the equation.
a=\frac{1}{2}\left(-7b+53\right)
Divide both sides by 2.
a=-\frac{7}{2}b+\frac{53}{2}
Multiply \frac{1}{2} times -7b+53.
6\left(-\frac{7}{2}b+\frac{53}{2}\right)-5b=-23
Substitute \frac{-7b+53}{2} for a in the other equation, 6a-5b=-23.
-21b+159-5b=-23
Multiply 6 times \frac{-7b+53}{2}.
-26b+159=-23
Add -21b to -5b.
-26b=-182
Subtract 159 from both sides of the equation.
b=7
Divide both sides by -26.
a=-\frac{7}{2}\times 7+\frac{53}{2}
Substitute 7 for b in a=-\frac{7}{2}b+\frac{53}{2}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{-49+53}{2}
Multiply -\frac{7}{2} times 7.
a=2
Add \frac{53}{2} to -\frac{49}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=2,b=7
The system is now solved.
2a+7b=53,6a-5b=-23
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&7\\6&-5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}53\\-23\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&7\\6&-5\end{matrix}\right))\left(\begin{matrix}2&7\\6&-5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\6&-5\end{matrix}\right))\left(\begin{matrix}53\\-23\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&7\\6&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\6&-5\end{matrix}\right))\left(\begin{matrix}53\\-23\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\6&-5\end{matrix}\right))\left(\begin{matrix}53\\-23\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-7\times 6}&-\frac{7}{2\left(-5\right)-7\times 6}\\-\frac{6}{2\left(-5\right)-7\times 6}&\frac{2}{2\left(-5\right)-7\times 6}\end{matrix}\right)\left(\begin{matrix}53\\-23\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{52}&\frac{7}{52}\\\frac{3}{26}&-\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}53\\-23\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{52}\times 53+\frac{7}{52}\left(-23\right)\\\frac{3}{26}\times 53-\frac{1}{26}\left(-23\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\7\end{matrix}\right)
Do the arithmetic.
a=2,b=7
Extract the matrix elements a and b.
2a+7b=53,6a-5b=-23
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 2a+6\times 7b=6\times 53,2\times 6a+2\left(-5\right)b=2\left(-23\right)
To make 2a and 6a equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 2.
12a+42b=318,12a-10b=-46
Simplify.
12a-12a+42b+10b=318+46
Subtract 12a-10b=-46 from 12a+42b=318 by subtracting like terms on each side of the equal sign.
42b+10b=318+46
Add 12a to -12a. Terms 12a and -12a cancel out, leaving an equation with only one variable that can be solved.
52b=318+46
Add 42b to 10b.
52b=364
Add 318 to 46.
b=7
Divide both sides by 52.
6a-5\times 7=-23
Substitute 7 for b in 6a-5b=-23. Because the resulting equation contains only one variable, you can solve for a directly.
6a-35=-23
Multiply -5 times 7.
6a=12
Add 35 to both sides of the equation.
a=2
Divide both sides by 6.
a=2,b=7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}