Solve for a, b
a=24
b=-2
Share
Copied to clipboard
2a+3b=42,3a+4b=64
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a+3b=42
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=-3b+42
Subtract 3b from both sides of the equation.
a=\frac{1}{2}\left(-3b+42\right)
Divide both sides by 2.
a=-\frac{3}{2}b+21
Multiply \frac{1}{2} times -3b+42.
3\left(-\frac{3}{2}b+21\right)+4b=64
Substitute -\frac{3b}{2}+21 for a in the other equation, 3a+4b=64.
-\frac{9}{2}b+63+4b=64
Multiply 3 times -\frac{3b}{2}+21.
-\frac{1}{2}b+63=64
Add -\frac{9b}{2} to 4b.
-\frac{1}{2}b=1
Subtract 63 from both sides of the equation.
b=-2
Multiply both sides by -2.
a=-\frac{3}{2}\left(-2\right)+21
Substitute -2 for b in a=-\frac{3}{2}b+21. Because the resulting equation contains only one variable, you can solve for a directly.
a=3+21
Multiply -\frac{3}{2} times -2.
a=24
Add 21 to 3.
a=24,b=-2
The system is now solved.
2a+3b=42,3a+4b=64
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}42\\64\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}42\\64\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}42\\64\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}42\\64\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}42\\64\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}42\\64\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\times 42+3\times 64\\3\times 42-2\times 64\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}24\\-2\end{matrix}\right)
Do the arithmetic.
a=24,b=-2
Extract the matrix elements a and b.
2a+3b=42,3a+4b=64
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2a+3\times 3b=3\times 42,2\times 3a+2\times 4b=2\times 64
To make 2a and 3a equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6a+9b=126,6a+8b=128
Simplify.
6a-6a+9b-8b=126-128
Subtract 6a+8b=128 from 6a+9b=126 by subtracting like terms on each side of the equal sign.
9b-8b=126-128
Add 6a to -6a. Terms 6a and -6a cancel out, leaving an equation with only one variable that can be solved.
b=126-128
Add 9b to -8b.
b=-2
Add 126 to -128.
3a+4\left(-2\right)=64
Substitute -2 for b in 3a+4b=64. Because the resulting equation contains only one variable, you can solve for a directly.
3a-8=64
Multiply 4 times -2.
3a=72
Add 8 to both sides of the equation.
a=24
Divide both sides by 3.
a=24,b=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}