Solve for a, b, c
a = -\frac{26}{5} = -5\frac{1}{5} = -5.2
b = \frac{19}{5} = 3\frac{4}{5} = 3.8
c = \frac{22}{5} = 4\frac{2}{5} = 4.4
Share
Copied to clipboard
a+b+c=3 3a+4c=2 2a+3b=1
Reorder the equations.
a=-b-c+3
Solve a+b+c=3 for a.
3\left(-b-c+3\right)+4c=2 2\left(-b-c+3\right)+3b=1
Substitute -b-c+3 for a in the second and third equation.
b=\frac{7}{3}+\frac{1}{3}c c=\frac{5}{2}+\frac{1}{2}b
Solve these equations for b and c respectively.
c=\frac{5}{2}+\frac{1}{2}\left(\frac{7}{3}+\frac{1}{3}c\right)
Substitute \frac{7}{3}+\frac{1}{3}c for b in the equation c=\frac{5}{2}+\frac{1}{2}b.
c=\frac{22}{5}
Solve c=\frac{5}{2}+\frac{1}{2}\left(\frac{7}{3}+\frac{1}{3}c\right) for c.
b=\frac{7}{3}+\frac{1}{3}\times \frac{22}{5}
Substitute \frac{22}{5} for c in the equation b=\frac{7}{3}+\frac{1}{3}c.
b=\frac{19}{5}
Calculate b from b=\frac{7}{3}+\frac{1}{3}\times \frac{22}{5}.
a=-\frac{19}{5}-\frac{22}{5}+3
Substitute \frac{19}{5} for b and \frac{22}{5} for c in the equation a=-b-c+3.
a=-\frac{26}{5}
Calculate a from a=-\frac{19}{5}-\frac{22}{5}+3.
a=-\frac{26}{5} b=\frac{19}{5} c=\frac{22}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}