Solve for a, d
a = \frac{95}{7} = 13\frac{4}{7} \approx 13.571428571
d = \frac{103}{28} = 3\frac{19}{28} \approx 3.678571429
Share
Copied to clipboard
28d=132-29
Consider the second equation. Subtract 29 from both sides.
28d=103
Subtract 29 from 132 to get 103.
d=\frac{103}{28}
Divide both sides by 28.
2a+16\times \frac{103}{28}=86
Consider the first equation. Insert the known values of variables into the equation.
2a+\frac{412}{7}=86
Multiply 16 and \frac{103}{28} to get \frac{412}{7}.
2a=86-\frac{412}{7}
Subtract \frac{412}{7} from both sides.
2a=\frac{190}{7}
Subtract \frac{412}{7} from 86 to get \frac{190}{7}.
a=\frac{\frac{190}{7}}{2}
Divide both sides by 2.
a=\frac{190}{7\times 2}
Express \frac{\frac{190}{7}}{2} as a single fraction.
a=\frac{190}{14}
Multiply 7 and 2 to get 14.
a=\frac{95}{7}
Reduce the fraction \frac{190}{14} to lowest terms by extracting and canceling out 2.
a=\frac{95}{7} d=\frac{103}{28}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}