Solve for S, t
t=21
S=39
Share
Copied to clipboard
2S+3t=141,4S+5t=261
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2S+3t=141
Choose one of the equations and solve it for S by isolating S on the left hand side of the equal sign.
2S=-3t+141
Subtract 3t from both sides of the equation.
S=\frac{1}{2}\left(-3t+141\right)
Divide both sides by 2.
S=-\frac{3}{2}t+\frac{141}{2}
Multiply \frac{1}{2} times -3t+141.
4\left(-\frac{3}{2}t+\frac{141}{2}\right)+5t=261
Substitute \frac{-3t+141}{2} for S in the other equation, 4S+5t=261.
-6t+282+5t=261
Multiply 4 times \frac{-3t+141}{2}.
-t+282=261
Add -6t to 5t.
-t=-21
Subtract 282 from both sides of the equation.
t=21
Divide both sides by -1.
S=-\frac{3}{2}\times 21+\frac{141}{2}
Substitute 21 for t in S=-\frac{3}{2}t+\frac{141}{2}. Because the resulting equation contains only one variable, you can solve for S directly.
S=\frac{-63+141}{2}
Multiply -\frac{3}{2} times 21.
S=39
Add \frac{141}{2} to -\frac{63}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
S=39,t=21
The system is now solved.
2S+3t=141,4S+5t=261
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}141\\261\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}S\\t\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}141\\261\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}S\\t\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}141\\261\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}S\\t\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}141\\261\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 4}&-\frac{3}{2\times 5-3\times 4}\\-\frac{4}{2\times 5-3\times 4}&\frac{2}{2\times 5-3\times 4}\end{matrix}\right)\left(\begin{matrix}141\\261\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{3}{2}\\2&-1\end{matrix}\right)\left(\begin{matrix}141\\261\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 141+\frac{3}{2}\times 261\\2\times 141-261\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}S\\t\end{matrix}\right)=\left(\begin{matrix}39\\21\end{matrix}\right)
Do the arithmetic.
S=39,t=21
Extract the matrix elements S and t.
2S+3t=141,4S+5t=261
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 2S+4\times 3t=4\times 141,2\times 4S+2\times 5t=2\times 261
To make 2S and 4S equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 2.
8S+12t=564,8S+10t=522
Simplify.
8S-8S+12t-10t=564-522
Subtract 8S+10t=522 from 8S+12t=564 by subtracting like terms on each side of the equal sign.
12t-10t=564-522
Add 8S to -8S. Terms 8S and -8S cancel out, leaving an equation with only one variable that can be solved.
2t=564-522
Add 12t to -10t.
2t=42
Add 564 to -522.
t=21
Divide both sides by 2.
4S+5\times 21=261
Substitute 21 for t in 4S+5t=261. Because the resulting equation contains only one variable, you can solve for S directly.
4S+105=261
Multiply 5 times 21.
4S=156
Subtract 105 from both sides of the equation.
S=39
Divide both sides by 4.
S=39,t=21
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}