Solve for y, c, b
y=3
c=-3
b=3
Share
Copied to clipboard
2y+6=21-3y
Consider the first equation. Use the distributive property to multiply 2 by y+3.
2y+6+3y=21
Add 3y to both sides.
5y+6=21
Combine 2y and 3y to get 5y.
5y=21-6
Subtract 6 from both sides.
5y=15
Subtract 6 from 21 to get 15.
y=\frac{15}{5}
Divide both sides by 5.
y=3
Divide 15 by 5 to get 3.
2-c+3c-9=-13
Consider the second equation. Use the distributive property to multiply 3 by c-3.
2+2c-9=-13
Combine -c and 3c to get 2c.
-7+2c=-13
Subtract 9 from 2 to get -7.
2c=-13+7
Add 7 to both sides.
2c=-6
Add -13 and 7 to get -6.
c=\frac{-6}{2}
Divide both sides by 2.
c=-3
Divide -6 by 2 to get -3.
-3+9b-12=12
Consider the third equation. Use the distributive property to multiply -3 by 1-3b.
-15+9b=12
Subtract 12 from -3 to get -15.
9b=12+15
Add 15 to both sides.
9b=27
Add 12 and 15 to get 27.
b=\frac{27}{9}
Divide both sides by 9.
b=3
Divide 27 by 9 to get 3.
y=3 c=-3 b=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}