Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x-2\right)+3y+7=8,2\left(x-1\right)-3\left(-3y+7\right)=24
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2\left(x-2\right)+3y+7=8
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x-4+3y+7=8
Multiply 2 times x-2.
2x+3y+3=8
Add -4 to 7.
2x+3y=5
Subtract 3 from both sides of the equation.
2x=-3y+5
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+5\right)
Divide both sides by 2.
x=-\frac{3}{2}y+\frac{5}{2}
Multiply \frac{1}{2} times -3y+5.
2\left(-\frac{3}{2}y+\frac{5}{2}-1\right)-3\left(-3y+7\right)=24
Substitute \frac{-3y+5}{2} for x in the other equation, 2\left(x-1\right)-3\left(-3y+7\right)=24.
2\left(-\frac{3}{2}y+\frac{3}{2}\right)-3\left(-3y+7\right)=24
Add \frac{5}{2} to -1.
-3y+3-3\left(-3y+7\right)=24
Multiply 2 times \frac{-3y+3}{2}.
-3y+3+9y-21=24
Multiply -3 times -3y+7.
6y+3-21=24
Add -3y to 9y.
6y-18=24
Add 3 to -21.
6y=42
Add 18 to both sides of the equation.
y=7
Divide both sides by 6.
x=-\frac{3}{2}\times 7+\frac{5}{2}
Substitute 7 for y in x=-\frac{3}{2}y+\frac{5}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-21+5}{2}
Multiply -\frac{3}{2} times 7.
x=-8
Add \frac{5}{2} to -\frac{21}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-8,y=7
The system is now solved.
2\left(x-2\right)+3y+7=8,2\left(x-1\right)-3\left(-3y+7\right)=24
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(x-2\right)+3y+7=8
Simplify the first equation to put it in standard form.
2x-4+3y+7=8
Multiply 2 times x-2.
2x+3y+3=8
Add -4 to 7.
2x+3y=5
Subtract 3 from both sides of the equation.
2\left(x-1\right)-3\left(-3y+7\right)=24
Simplify the second equation to put it in standard form.
2x-2-3\left(-3y+7\right)=24
Multiply 2 times x-1.
2x-2+9y-21=24
Multiply -3 times -3y+7.
2x+9y-23=24
Add -2 to -21.
2x+9y=47
Add 23 to both sides of the equation.
\left(\begin{matrix}2&3\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\47\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\2&9\end{matrix}\right))\left(\begin{matrix}2&3\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&9\end{matrix}\right))\left(\begin{matrix}5\\47\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\2&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&9\end{matrix}\right))\left(\begin{matrix}5\\47\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&9\end{matrix}\right))\left(\begin{matrix}5\\47\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\times 9-3\times 2}&-\frac{3}{2\times 9-3\times 2}\\-\frac{2}{2\times 9-3\times 2}&\frac{2}{2\times 9-3\times 2}\end{matrix}\right)\left(\begin{matrix}5\\47\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{4}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}5\\47\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 5-\frac{1}{4}\times 47\\-\frac{1}{6}\times 5+\frac{1}{6}\times 47\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\7\end{matrix}\right)
Do the arithmetic.
x=-8,y=7
Extract the matrix elements x and y.