\left. \begin{array} { l } { 2 ( a - b ) ^ { 2 } - 3 ( b - a ) - 2 ( b - a ) ^ { 2 } + 4 ( a - b ) - ( a - b ) ^ { 3 } } \\ { 2 b ^ { 2 } - 3 b + 3 a - 2 b ^ { 2 } + 2 a ^ { 2 } + 4 a - 4 b - a ^ { 3 } + b ^ { 3 } } \end{array} \right.
Least Common Multiple
\left(a-b\right)\left(a^{5}-2a^{4}-14a^{3}-a^{2}b^{3}+14a^{2}+2ab^{4}-21ab^{2}+49a-b^{5}+14b^{3}+b^{2}a^{3}-2ba^{4}+4ba^{3}+21ba^{2}-49b-2\left(ab\right)^{2}\right)
Evaluate
-\left(a-b\right)^{3}+7a-7b,\ -a^{3}+2a^{2}+7a+b^{3}-7b
Share
Copied to clipboard
7a-7b-\left(a-b\right)^{3}=\left(a-b\right)\left(-a^{2}+2ab-b^{2}+7\right)
Factor the expressions that are not already factored.
\left(a-b\right)\left(a^{5}-2a^{4}-14a^{3}-a^{2}b^{3}-2a^{2}b^{2}+14a^{2}+2ab^{4}-21ab^{2}+49a-b^{5}+14b^{3}+b^{2}a^{3}-2ba^{4}+4ba^{3}+21ba^{2}-49b\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
a^{6}-2a^{5}-14a^{4}-2a^{3}b^{3}+14a^{3}+3a^{2}b^{4}+2a^{2}b^{3}-42a^{2}b^{2}+49a^{2}-3ab^{5}+35ab^{3}-98ab+b^{6}-14b^{4}+3b^{2}a^{4}-6b^{2}a^{3}+49b^{2}-3ba^{5}+6ba^{4}+35ba^{3}-14ba^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}