Solve for y, x
x=\frac{5}{12}\approx 0.416666667
y = \frac{11}{8} = 1\frac{3}{8} = 1.375
Graph
Share
Copied to clipboard
4y+2=6\left(4x-x\right)
Consider the first equation. Use the distributive property to multiply 2 by 2y+1.
4y+2=6\times 3x
Combine 4x and -x to get 3x.
4y+2=18x
Multiply 6 and 3 to get 18.
4y+2-18x=0
Subtract 18x from both sides.
4y-18x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
4y-18x=-2,2y+3x=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4y-18x=-2
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
4y=18x-2
Add 18x to both sides of the equation.
y=\frac{1}{4}\left(18x-2\right)
Divide both sides by 4.
y=\frac{9}{2}x-\frac{1}{2}
Multiply \frac{1}{4} times 18x-2.
2\left(\frac{9}{2}x-\frac{1}{2}\right)+3x=4
Substitute \frac{9x-1}{2} for y in the other equation, 2y+3x=4.
9x-1+3x=4
Multiply 2 times \frac{9x-1}{2}.
12x-1=4
Add 9x to 3x.
12x=5
Add 1 to both sides of the equation.
x=\frac{5}{12}
Divide both sides by 12.
y=\frac{9}{2}\times \frac{5}{12}-\frac{1}{2}
Substitute \frac{5}{12} for x in y=\frac{9}{2}x-\frac{1}{2}. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{15}{8}-\frac{1}{2}
Multiply \frac{9}{2} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{11}{8}
Add -\frac{1}{2} to \frac{15}{8} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{11}{8},x=\frac{5}{12}
The system is now solved.
4y+2=6\left(4x-x\right)
Consider the first equation. Use the distributive property to multiply 2 by 2y+1.
4y+2=6\times 3x
Combine 4x and -x to get 3x.
4y+2=18x
Multiply 6 and 3 to get 18.
4y+2-18x=0
Subtract 18x from both sides.
4y-18x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
4y-18x=-2,2y+3x=4
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-18\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-18\\2&3\end{matrix}\right))\left(\begin{matrix}4&-18\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-18\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-18\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-18\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-18\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\4\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-18\times 2\right)}&-\frac{-18}{4\times 3-\left(-18\times 2\right)}\\-\frac{2}{4\times 3-\left(-18\times 2\right)}&\frac{4}{4\times 3-\left(-18\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}&\frac{3}{8}\\-\frac{1}{24}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-2\\4\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}\left(-2\right)+\frac{3}{8}\times 4\\-\frac{1}{24}\left(-2\right)+\frac{1}{12}\times 4\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{11}{8}\\\frac{5}{12}\end{matrix}\right)
Do the arithmetic.
y=\frac{11}{8},x=\frac{5}{12}
Extract the matrix elements y and x.
4y+2=6\left(4x-x\right)
Consider the first equation. Use the distributive property to multiply 2 by 2y+1.
4y+2=6\times 3x
Combine 4x and -x to get 3x.
4y+2=18x
Multiply 6 and 3 to get 18.
4y+2-18x=0
Subtract 18x from both sides.
4y-18x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
4y-18x=-2,2y+3x=4
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 4y+2\left(-18\right)x=2\left(-2\right),4\times 2y+4\times 3x=4\times 4
To make 4y and 2y equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 4.
8y-36x=-4,8y+12x=16
Simplify.
8y-8y-36x-12x=-4-16
Subtract 8y+12x=16 from 8y-36x=-4 by subtracting like terms on each side of the equal sign.
-36x-12x=-4-16
Add 8y to -8y. Terms 8y and -8y cancel out, leaving an equation with only one variable that can be solved.
-48x=-4-16
Add -36x to -12x.
-48x=-20
Add -4 to -16.
x=\frac{5}{12}
Divide both sides by -48.
2y+3\times \frac{5}{12}=4
Substitute \frac{5}{12} for x in 2y+3x=4. Because the resulting equation contains only one variable, you can solve for y directly.
2y+\frac{5}{4}=4
Multiply 3 times \frac{5}{12}.
2y=\frac{11}{4}
Subtract \frac{5}{4} from both sides of the equation.
y=\frac{11}{8}
Divide both sides by 2.
y=\frac{11}{8},x=\frac{5}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}