Solve for x, y
x=30
y=20
Graph
Share
Copied to clipboard
4x=6y
Consider the first equation. Multiply 2 and 2 to get 4.
x=\frac{1}{4}\times 6y
Divide both sides by 4.
x=\frac{3}{2}y
Multiply \frac{1}{4} times 6y.
4\times \frac{3}{2}y+12y=360
Substitute \frac{3y}{2} for x in the other equation, 4x+12y=360.
6y+12y=360
Multiply 4 times \frac{3y}{2}.
18y=360
Add 6y to 12y.
y=20
Divide both sides by 18.
x=\frac{3}{2}\times 20
Substitute 20 for y in x=\frac{3}{2}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=30
Multiply \frac{3}{2} times 20.
x=30,y=20
The system is now solved.
4x=6y
Consider the first equation. Multiply 2 and 2 to get 4.
4x-6y=0
Subtract 6y from both sides.
4x+12y=360
Consider the second equation. Multiply 2 and 6 to get 12.
4x-6y=0,4x+12y=360
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-6\\4&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\360\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}4&-6\\4&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}0\\360\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-6\\4&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}0\\360\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}0\\360\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{4\times 12-\left(-6\times 4\right)}&-\frac{-6}{4\times 12-\left(-6\times 4\right)}\\-\frac{4}{4\times 12-\left(-6\times 4\right)}&\frac{4}{4\times 12-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}0\\360\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{12}\\-\frac{1}{18}&\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}0\\360\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 360\\\frac{1}{18}\times 360\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\20\end{matrix}\right)
Do the arithmetic.
x=30,y=20
Extract the matrix elements x and y.
4x=6y
Consider the first equation. Multiply 2 and 2 to get 4.
4x-6y=0
Subtract 6y from both sides.
4x+12y=360
Consider the second equation. Multiply 2 and 6 to get 12.
4x-6y=0,4x+12y=360
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x-4x-6y-12y=-360
Subtract 4x+12y=360 from 4x-6y=0 by subtracting like terms on each side of the equal sign.
-6y-12y=-360
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
-18y=-360
Add -6y to -12y.
y=20
Divide both sides by -18.
4x+12\times 20=360
Substitute 20 for y in 4x+12y=360. Because the resulting equation contains only one variable, you can solve for x directly.
4x+240=360
Multiply 12 times 20.
4x=120
Subtract 240 from both sides of the equation.
x=30
Divide both sides by 4.
x=30,y=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}