Solve for v, w
v = \frac{19}{3} = 6\frac{1}{3} \approx 6.333333333
w = -\frac{14}{9} = -1\frac{5}{9} \approx -1.555555556
Share
Copied to clipboard
-3v+21=2
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
-3v=2-21
Subtract 21 from both sides.
-3v=-19
Subtract 21 from 2 to get -19.
v=\frac{-19}{-3}
Divide both sides by -3.
v=\frac{19}{3}
Fraction \frac{-19}{-3} can be simplified to \frac{19}{3} by removing the negative sign from both the numerator and the denominator.
\frac{19}{3}=3w+11
Consider the second equation. Insert the known values of variables into the equation.
3w+11=\frac{19}{3}
Swap sides so that all variable terms are on the left hand side.
3w=\frac{19}{3}-11
Subtract 11 from both sides.
3w=-\frac{14}{3}
Subtract 11 from \frac{19}{3} to get -\frac{14}{3}.
w=\frac{-\frac{14}{3}}{3}
Divide both sides by 3.
w=\frac{-14}{3\times 3}
Express \frac{-\frac{14}{3}}{3} as a single fraction.
w=\frac{-14}{9}
Multiply 3 and 3 to get 9.
w=-\frac{14}{9}
Fraction \frac{-14}{9} can be rewritten as -\frac{14}{9} by extracting the negative sign.
v=\frac{19}{3} w=-\frac{14}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}