Solve for k, b
k = \frac{8 \sqrt{3}}{3} \approx 4.618802154
b=-3
Share
Copied to clipboard
4=2\left(-\frac{\sqrt{3}}{2}\right)k+12
Consider the first equation. Multiply both sides of the equation by 2.
4=\frac{-2\sqrt{3}}{2}k+12
Express 2\left(-\frac{\sqrt{3}}{2}\right) as a single fraction.
4=-\sqrt{3}k+12
Cancel out 2 and 2.
-\sqrt{3}k+12=4
Swap sides so that all variable terms are on the left hand side.
-\sqrt{3}k=4-12
Subtract 12 from both sides.
-\sqrt{3}k=-8
Subtract 12 from 4 to get -8.
2=\sqrt{3}k+2b
Consider the second equation. Multiply both sides of the equation by 2.
\sqrt{3}k+2b=2
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{3}\right)k=-8,\sqrt{3}k+2b=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(-\sqrt{3}\right)k=-8
Pick one of the two equations which is more simple to solve for k by isolating k on the left hand side of the equal sign.
k=\frac{8\sqrt{3}}{3}
Divide both sides by -\sqrt{3}.
\sqrt{3}\times \frac{8\sqrt{3}}{3}+2b=2
Substitute \frac{8\sqrt{3}}{3} for k in the other equation, \sqrt{3}k+2b=2.
8+2b=2
Multiply \sqrt{3} times \frac{8\sqrt{3}}{3}.
2b=-6
Subtract 8 from both sides of the equation.
b=-3
Divide both sides by 2.
k=\frac{8\sqrt{3}}{3},b=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}