Solve for x, y
x=\frac{24}{155}\approx 0.15483871
y = -\frac{920}{3} = -306\frac{2}{3} \approx -306.666666667
Graph
Share
Copied to clipboard
\frac{2\times 4}{x}+\frac{7}{3}=54
Consider the first equation. Divide 2 by \frac{x}{4} by multiplying 2 by the reciprocal of \frac{x}{4}.
\frac{8}{x}+\frac{7}{3}=54
Multiply 2 and 4 to get 8.
\frac{8\times 3}{3x}+\frac{7x}{3x}=54
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 3 is 3x. Multiply \frac{8}{x} times \frac{3}{3}. Multiply \frac{7}{3} times \frac{x}{x}.
\frac{8\times 3+7x}{3x}=54
Since \frac{8\times 3}{3x} and \frac{7x}{3x} have the same denominator, add them by adding their numerators.
\frac{24+7x}{3x}=54
Do the multiplications in 8\times 3+7x.
24+7x=162x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
24+7x-162x=0
Subtract 162x from both sides.
24-155x=0
Combine 7x and -162x to get -155x.
-155x=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-24}{-155}
Divide both sides by -155.
x=\frac{24}{155}
Fraction \frac{-24}{-155} can be simplified to \frac{24}{155} by removing the negative sign from both the numerator and the denominator.
\frac{4}{\frac{\frac{24}{155}}{4}}+\frac{y}{5}=42
Consider the second equation. Insert the known values of variables into the equation.
\frac{775}{6}\times 4+y=210
Multiply both sides of the equation by 5.
\frac{1550}{3}+y=210
Multiply \frac{775}{6} and 4 to get \frac{1550}{3}.
y=210-\frac{1550}{3}
Subtract \frac{1550}{3} from both sides.
y=-\frac{920}{3}
Subtract \frac{1550}{3} from 210 to get -\frac{920}{3}.
x=\frac{24}{155} y=-\frac{920}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}