Solve for x, y
x=-4
y=-10
Graph
Share
Copied to clipboard
19x-8y=4,5x-3y=10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
19x-8y=4
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
19x=8y+4
Add 8y to both sides of the equation.
x=\frac{1}{19}\left(8y+4\right)
Divide both sides by 19.
x=\frac{8}{19}y+\frac{4}{19}
Multiply \frac{1}{19} times 8y+4.
5\left(\frac{8}{19}y+\frac{4}{19}\right)-3y=10
Substitute \frac{8y+4}{19} for x in the other equation, 5x-3y=10.
\frac{40}{19}y+\frac{20}{19}-3y=10
Multiply 5 times \frac{8y+4}{19}.
-\frac{17}{19}y+\frac{20}{19}=10
Add \frac{40y}{19} to -3y.
-\frac{17}{19}y=\frac{170}{19}
Subtract \frac{20}{19} from both sides of the equation.
y=-10
Divide both sides of the equation by -\frac{17}{19}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{8}{19}\left(-10\right)+\frac{4}{19}
Substitute -10 for y in x=\frac{8}{19}y+\frac{4}{19}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-80+4}{19}
Multiply \frac{8}{19} times -10.
x=-4
Add \frac{4}{19} to -\frac{80}{19} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-4,y=-10
The system is now solved.
19x-8y=4,5x-3y=10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}19&-8\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}19&-8\\5&-3\end{matrix}\right))\left(\begin{matrix}19&-8\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&-8\\5&-3\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}19&-8\\5&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&-8\\5&-3\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&-8\\5&-3\end{matrix}\right))\left(\begin{matrix}4\\10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{19\left(-3\right)-\left(-8\times 5\right)}&-\frac{-8}{19\left(-3\right)-\left(-8\times 5\right)}\\-\frac{5}{19\left(-3\right)-\left(-8\times 5\right)}&\frac{19}{19\left(-3\right)-\left(-8\times 5\right)}\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&-\frac{8}{17}\\\frac{5}{17}&-\frac{19}{17}\end{matrix}\right)\left(\begin{matrix}4\\10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 4-\frac{8}{17}\times 10\\\frac{5}{17}\times 4-\frac{19}{17}\times 10\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-10\end{matrix}\right)
Do the arithmetic.
x=-4,y=-10
Extract the matrix elements x and y.
19x-8y=4,5x-3y=10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 19x+5\left(-8\right)y=5\times 4,19\times 5x+19\left(-3\right)y=19\times 10
To make 19x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 19.
95x-40y=20,95x-57y=190
Simplify.
95x-95x-40y+57y=20-190
Subtract 95x-57y=190 from 95x-40y=20 by subtracting like terms on each side of the equal sign.
-40y+57y=20-190
Add 95x to -95x. Terms 95x and -95x cancel out, leaving an equation with only one variable that can be solved.
17y=20-190
Add -40y to 57y.
17y=-170
Add 20 to -190.
y=-10
Divide both sides by 17.
5x-3\left(-10\right)=10
Substitute -10 for y in 5x-3y=10. Because the resulting equation contains only one variable, you can solve for x directly.
5x+30=10
Multiply -3 times -10.
5x=-20
Subtract 30 from both sides of the equation.
x=-4
Divide both sides by 5.
x=-4,y=-10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}