Solve for x, y
x=9
y = -\frac{26}{3} = -8\frac{2}{3} \approx -8.666666667
Graph
Share
Copied to clipboard
19\times 9+18y=15
Consider the first equation. Insert the known values of variables into the equation.
171+18y=15
Multiply 19 and 9 to get 171.
18y=15-171
Subtract 171 from both sides.
18y=-156
Subtract 171 from 15 to get -156.
y=\frac{-156}{18}
Divide both sides by 18.
y=-\frac{26}{3}
Reduce the fraction \frac{-156}{18} to lowest terms by extracting and canceling out 6.
x=9 y=-\frac{26}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}