Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

159x+298y=9976,295x+982y=7699
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
159x+298y=9976
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
159x=-298y+9976
Subtract 298y from both sides of the equation.
x=\frac{1}{159}\left(-298y+9976\right)
Divide both sides by 159.
x=-\frac{298}{159}y+\frac{9976}{159}
Multiply \frac{1}{159} times -298y+9976.
295\left(-\frac{298}{159}y+\frac{9976}{159}\right)+982y=7699
Substitute \frac{-298y+9976}{159} for x in the other equation, 295x+982y=7699.
-\frac{87910}{159}y+\frac{2942920}{159}+982y=7699
Multiply 295 times \frac{-298y+9976}{159}.
\frac{68228}{159}y+\frac{2942920}{159}=7699
Add -\frac{87910y}{159} to 982y.
\frac{68228}{159}y=-\frac{1718779}{159}
Subtract \frac{2942920}{159} from both sides of the equation.
y=-\frac{1718779}{68228}
Divide both sides of the equation by \frac{68228}{159}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{298}{159}\left(-\frac{1718779}{68228}\right)+\frac{9976}{159}
Substitute -\frac{1718779}{68228} for y in x=-\frac{298}{159}y+\frac{9976}{159}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{256098071}{5424126}+\frac{9976}{159}
Multiply -\frac{298}{159} times -\frac{1718779}{68228} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{3751065}{34114}
Add \frac{9976}{159} to \frac{256098071}{5424126} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3751065}{34114},y=-\frac{1718779}{68228}
The system is now solved.
159x+298y=9976,295x+982y=7699
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}159&298\\295&982\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9976\\7699\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}159&298\\295&982\end{matrix}\right))\left(\begin{matrix}159&298\\295&982\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}159&298\\295&982\end{matrix}\right))\left(\begin{matrix}9976\\7699\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}159&298\\295&982\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}159&298\\295&982\end{matrix}\right))\left(\begin{matrix}9976\\7699\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}159&298\\295&982\end{matrix}\right))\left(\begin{matrix}9976\\7699\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{982}{159\times 982-298\times 295}&-\frac{298}{159\times 982-298\times 295}\\-\frac{295}{159\times 982-298\times 295}&\frac{159}{159\times 982-298\times 295}\end{matrix}\right)\left(\begin{matrix}9976\\7699\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{491}{34114}&-\frac{149}{34114}\\-\frac{295}{68228}&\frac{159}{68228}\end{matrix}\right)\left(\begin{matrix}9976\\7699\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{491}{34114}\times 9976-\frac{149}{34114}\times 7699\\-\frac{295}{68228}\times 9976+\frac{159}{68228}\times 7699\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3751065}{34114}\\-\frac{1718779}{68228}\end{matrix}\right)
Do the arithmetic.
x=\frac{3751065}{34114},y=-\frac{1718779}{68228}
Extract the matrix elements x and y.
159x+298y=9976,295x+982y=7699
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
295\times 159x+295\times 298y=295\times 9976,159\times 295x+159\times 982y=159\times 7699
To make 159x and 295x equal, multiply all terms on each side of the first equation by 295 and all terms on each side of the second by 159.
46905x+87910y=2942920,46905x+156138y=1224141
Simplify.
46905x-46905x+87910y-156138y=2942920-1224141
Subtract 46905x+156138y=1224141 from 46905x+87910y=2942920 by subtracting like terms on each side of the equal sign.
87910y-156138y=2942920-1224141
Add 46905x to -46905x. Terms 46905x and -46905x cancel out, leaving an equation with only one variable that can be solved.
-68228y=2942920-1224141
Add 87910y to -156138y.
-68228y=1718779
Add 2942920 to -1224141.
y=-\frac{1718779}{68228}
Divide both sides by -68228.
295x+982\left(-\frac{1718779}{68228}\right)=7699
Substitute -\frac{1718779}{68228} for y in 295x+982y=7699. Because the resulting equation contains only one variable, you can solve for x directly.
295x-\frac{843920489}{34114}=7699
Multiply 982 times -\frac{1718779}{68228}.
295x=\frac{1106564175}{34114}
Add \frac{843920489}{34114} to both sides of the equation.
x=\frac{3751065}{34114}
Divide both sides by 295.
x=\frac{3751065}{34114},y=-\frac{1718779}{68228}
The system is now solved.