Solve for x, y
x = \frac{422300}{383} = 1102\frac{234}{383} \approx 1102.610966057
y = \frac{49350}{383} = 128\frac{326}{383} \approx 128.851174935
Graph
Share
Copied to clipboard
1.25x+1.1y=1520
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
1.1x+2.5y=1535
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
1.25x+1.1y=1520,1.1x+2.5y=1535
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
1.25x+1.1y=1520
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
1.25x=-1.1y+1520
Subtract \frac{11y}{10} from both sides of the equation.
x=0.8\left(-1.1y+1520\right)
Divide both sides of the equation by 1.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-0.88y+1216
Multiply 0.8 times -\frac{11y}{10}+1520.
1.1\left(-0.88y+1216\right)+2.5y=1535
Substitute -\frac{22y}{25}+1216 for x in the other equation, 1.1x+2.5y=1535.
-0.968y+1337.6+2.5y=1535
Multiply 1.1 times -\frac{22y}{25}+1216.
1.532y+1337.6=1535
Add -\frac{121y}{125} to \frac{5y}{2}.
1.532y=197.4
Subtract 1337.6 from both sides of the equation.
y=\frac{49350}{383}
Divide both sides of the equation by 1.532, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-0.88\times \frac{49350}{383}+1216
Substitute \frac{49350}{383} for y in x=-0.88y+1216. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{43428}{383}+1216
Multiply -0.88 times \frac{49350}{383} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{422300}{383}
Add 1216 to -\frac{43428}{383}.
x=\frac{422300}{383},y=\frac{49350}{383}
The system is now solved.
1.25x+1.1y=1520
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
1.1x+2.5y=1535
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
1.25x+1.1y=1520,1.1x+2.5y=1535
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1520\\1535\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right))\left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right))\left(\begin{matrix}1520\\1535\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right))\left(\begin{matrix}1520\\1535\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.25&1.1\\1.1&2.5\end{matrix}\right))\left(\begin{matrix}1520\\1535\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2.5}{1.25\times 2.5-1.1\times 1.1}&-\frac{1.1}{1.25\times 2.5-1.1\times 1.1}\\-\frac{1.1}{1.25\times 2.5-1.1\times 1.1}&\frac{1.25}{1.25\times 2.5-1.1\times 1.1}\end{matrix}\right)\left(\begin{matrix}1520\\1535\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{500}{383}&-\frac{220}{383}\\-\frac{220}{383}&\frac{250}{383}\end{matrix}\right)\left(\begin{matrix}1520\\1535\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{500}{383}\times 1520-\frac{220}{383}\times 1535\\-\frac{220}{383}\times 1520+\frac{250}{383}\times 1535\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{422300}{383}\\\frac{49350}{383}\end{matrix}\right)
Do the arithmetic.
x=\frac{422300}{383},y=\frac{49350}{383}
Extract the matrix elements x and y.
1.25x+1.1y=1520
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
1.1x+2.5y=1535
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
1.25x+1.1y=1520,1.1x+2.5y=1535
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1.1\times 1.25x+1.1\times 1.1y=1.1\times 1520,1.25\times 1.1x+1.25\times 2.5y=1.25\times 1535
To make \frac{5x}{4} and \frac{11x}{10} equal, multiply all terms on each side of the first equation by 1.1 and all terms on each side of the second by 1.25.
1.375x+1.21y=1672,1.375x+3.125y=1918.75
Simplify.
1.375x-1.375x+1.21y-3.125y=1672-1918.75
Subtract 1.375x+3.125y=1918.75 from 1.375x+1.21y=1672 by subtracting like terms on each side of the equal sign.
1.21y-3.125y=1672-1918.75
Add \frac{11x}{8} to -\frac{11x}{8}. Terms \frac{11x}{8} and -\frac{11x}{8} cancel out, leaving an equation with only one variable that can be solved.
-1.915y=1672-1918.75
Add \frac{121y}{100} to -\frac{25y}{8}.
-1.915y=-246.75
Add 1672 to -1918.75.
y=\frac{49350}{383}
Divide both sides of the equation by -1.915, which is the same as multiplying both sides by the reciprocal of the fraction.
1.1x+2.5\times \frac{49350}{383}=1535
Substitute \frac{49350}{383} for y in 1.1x+2.5y=1535. Because the resulting equation contains only one variable, you can solve for x directly.
1.1x+\frac{123375}{383}=1535
Multiply 2.5 times \frac{49350}{383} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
1.1x=\frac{464530}{383}
Subtract \frac{123375}{383} from both sides of the equation.
x=\frac{422300}{383}
Divide both sides of the equation by 1.1, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{422300}{383},y=\frac{49350}{383}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}