Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x-5y=4000,9x-2y=4000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x-5y=4000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=5y+4000
Add 5y to both sides of the equation.
x=\frac{1}{15}\left(5y+4000\right)
Divide both sides by 15.
x=\frac{1}{3}y+\frac{800}{3}
Multiply \frac{1}{15} times 4000+5y.
9\left(\frac{1}{3}y+\frac{800}{3}\right)-2y=4000
Substitute \frac{800+y}{3} for x in the other equation, 9x-2y=4000.
3y+2400-2y=4000
Multiply 9 times \frac{800+y}{3}.
y+2400=4000
Add 3y to -2y.
y=1600
Subtract 2400 from both sides of the equation.
x=\frac{1}{3}\times 1600+\frac{800}{3}
Substitute 1600 for y in x=\frac{1}{3}y+\frac{800}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1600+800}{3}
Multiply \frac{1}{3} times 1600.
x=800
Add \frac{800}{3} to \frac{1600}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=800,y=1600
The system is now solved.
15x-5y=4000,9x-2y=4000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4000\\4000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}15&-5\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4000\\4000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&-5\\9&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4000\\4000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-5\\9&-2\end{matrix}\right))\left(\begin{matrix}4000\\4000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15\left(-2\right)-\left(-5\times 9\right)}&-\frac{-5}{15\left(-2\right)-\left(-5\times 9\right)}\\-\frac{9}{15\left(-2\right)-\left(-5\times 9\right)}&\frac{15}{15\left(-2\right)-\left(-5\times 9\right)}\end{matrix}\right)\left(\begin{matrix}4000\\4000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15}&\frac{1}{3}\\-\frac{3}{5}&1\end{matrix}\right)\left(\begin{matrix}4000\\4000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15}\times 4000+\frac{1}{3}\times 4000\\-\frac{3}{5}\times 4000+4000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\1600\end{matrix}\right)
Do the arithmetic.
x=800,y=1600
Extract the matrix elements x and y.
15x-5y=4000,9x-2y=4000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 15x+9\left(-5\right)y=9\times 4000,15\times 9x+15\left(-2\right)y=15\times 4000
To make 15x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 15.
135x-45y=36000,135x-30y=60000
Simplify.
135x-135x-45y+30y=36000-60000
Subtract 135x-30y=60000 from 135x-45y=36000 by subtracting like terms on each side of the equal sign.
-45y+30y=36000-60000
Add 135x to -135x. Terms 135x and -135x cancel out, leaving an equation with only one variable that can be solved.
-15y=36000-60000
Add -45y to 30y.
-15y=-24000
Add 36000 to -60000.
y=1600
Divide both sides by -15.
9x-2\times 1600=4000
Substitute 1600 for y in 9x-2y=4000. Because the resulting equation contains only one variable, you can solve for x directly.
9x-3200=4000
Multiply -2 times 1600.
9x=7200
Add 3200 to both sides of the equation.
x=800
Divide both sides by 9.
x=800,y=1600
The system is now solved.