Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x-40y=100,-15x+18y=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x-40y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=40y+100
Add 40y to both sides of the equation.
x=\frac{1}{15}\left(40y+100\right)
Divide both sides by 15.
x=\frac{8}{3}y+\frac{20}{3}
Multiply \frac{1}{15} times 40y+100.
-15\left(\frac{8}{3}y+\frac{20}{3}\right)+18y=12
Substitute \frac{8y+20}{3} for x in the other equation, -15x+18y=12.
-40y-100+18y=12
Multiply -15 times \frac{8y+20}{3}.
-22y-100=12
Add -40y to 18y.
-22y=112
Add 100 to both sides of the equation.
y=-\frac{56}{11}
Divide both sides by -22.
x=\frac{8}{3}\left(-\frac{56}{11}\right)+\frac{20}{3}
Substitute -\frac{56}{11} for y in x=\frac{8}{3}y+\frac{20}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{448}{33}+\frac{20}{3}
Multiply \frac{8}{3} times -\frac{56}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{76}{11}
Add \frac{20}{3} to -\frac{448}{33} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{76}{11},y=-\frac{56}{11}
The system is now solved.
15x-40y=100,-15x+18y=12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&-40\\-15&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&-40\\-15&18\end{matrix}\right))\left(\begin{matrix}15&-40\\-15&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-40\\-15&18\end{matrix}\right))\left(\begin{matrix}100\\12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&-40\\-15&18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-40\\-15&18\end{matrix}\right))\left(\begin{matrix}100\\12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-40\\-15&18\end{matrix}\right))\left(\begin{matrix}100\\12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{15\times 18-\left(-40\left(-15\right)\right)}&-\frac{-40}{15\times 18-\left(-40\left(-15\right)\right)}\\-\frac{-15}{15\times 18-\left(-40\left(-15\right)\right)}&\frac{15}{15\times 18-\left(-40\left(-15\right)\right)}\end{matrix}\right)\left(\begin{matrix}100\\12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{55}&-\frac{4}{33}\\-\frac{1}{22}&-\frac{1}{22}\end{matrix}\right)\left(\begin{matrix}100\\12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{55}\times 100-\frac{4}{33}\times 12\\-\frac{1}{22}\times 100-\frac{1}{22}\times 12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{76}{11}\\-\frac{56}{11}\end{matrix}\right)
Do the arithmetic.
x=-\frac{76}{11},y=-\frac{56}{11}
Extract the matrix elements x and y.
15x-40y=100,-15x+18y=12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-15\times 15x-15\left(-40\right)y=-15\times 100,15\left(-15\right)x+15\times 18y=15\times 12
To make 15x and -15x equal, multiply all terms on each side of the first equation by -15 and all terms on each side of the second by 15.
-225x+600y=-1500,-225x+270y=180
Simplify.
-225x+225x+600y-270y=-1500-180
Subtract -225x+270y=180 from -225x+600y=-1500 by subtracting like terms on each side of the equal sign.
600y-270y=-1500-180
Add -225x to 225x. Terms -225x and 225x cancel out, leaving an equation with only one variable that can be solved.
330y=-1500-180
Add 600y to -270y.
330y=-1680
Add -1500 to -180.
y=-\frac{56}{11}
Divide both sides by 330.
-15x+18\left(-\frac{56}{11}\right)=12
Substitute -\frac{56}{11} for y in -15x+18y=12. Because the resulting equation contains only one variable, you can solve for x directly.
-15x-\frac{1008}{11}=12
Multiply 18 times -\frac{56}{11}.
-15x=\frac{1140}{11}
Add \frac{1008}{11} to both sides of the equation.
x=-\frac{76}{11}
Divide both sides by -15.
x=-\frac{76}{11},y=-\frac{56}{11}
The system is now solved.