Solve for x, y
x = \frac{104}{29} = 3\frac{17}{29} \approx 3.586206897
y = -\frac{2459}{551} = -4\frac{255}{551} \approx -4.462794918
Graph
Share
Copied to clipboard
15\left(104-12x\right)+323y=-527
Consider the second equation. Multiply both sides of the equation by 17.
1560-180x+323y=-527
Use the distributive property to multiply 15 by 104-12x.
-180x+323y=-527-1560
Subtract 1560 from both sides.
-180x+323y=-2087
Subtract 1560 from -527 to get -2087.
15x+19y=-31,-180x+323y=-2087
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x+19y=-31
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=-19y-31
Subtract 19y from both sides of the equation.
x=\frac{1}{15}\left(-19y-31\right)
Divide both sides by 15.
x=-\frac{19}{15}y-\frac{31}{15}
Multiply \frac{1}{15} times -19y-31.
-180\left(-\frac{19}{15}y-\frac{31}{15}\right)+323y=-2087
Substitute \frac{-19y-31}{15} for x in the other equation, -180x+323y=-2087.
228y+372+323y=-2087
Multiply -180 times \frac{-19y-31}{15}.
551y+372=-2087
Add 228y to 323y.
551y=-2459
Subtract 372 from both sides of the equation.
y=-\frac{2459}{551}
Divide both sides by 551.
x=-\frac{19}{15}\left(-\frac{2459}{551}\right)-\frac{31}{15}
Substitute -\frac{2459}{551} for y in x=-\frac{19}{15}y-\frac{31}{15}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2459}{435}-\frac{31}{15}
Multiply -\frac{19}{15} times -\frac{2459}{551} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{104}{29}
Add -\frac{31}{15} to \frac{2459}{435} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{104}{29},y=-\frac{2459}{551}
The system is now solved.
15\left(104-12x\right)+323y=-527
Consider the second equation. Multiply both sides of the equation by 17.
1560-180x+323y=-527
Use the distributive property to multiply 15 by 104-12x.
-180x+323y=-527-1560
Subtract 1560 from both sides.
-180x+323y=-2087
Subtract 1560 from -527 to get -2087.
15x+19y=-31,-180x+323y=-2087
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&19\\-180&323\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-31\\-2087\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&19\\-180&323\end{matrix}\right))\left(\begin{matrix}15&19\\-180&323\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&19\\-180&323\end{matrix}\right))\left(\begin{matrix}-31\\-2087\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&19\\-180&323\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&19\\-180&323\end{matrix}\right))\left(\begin{matrix}-31\\-2087\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&19\\-180&323\end{matrix}\right))\left(\begin{matrix}-31\\-2087\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{323}{15\times 323-19\left(-180\right)}&-\frac{19}{15\times 323-19\left(-180\right)}\\-\frac{-180}{15\times 323-19\left(-180\right)}&\frac{15}{15\times 323-19\left(-180\right)}\end{matrix}\right)\left(\begin{matrix}-31\\-2087\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{435}&-\frac{1}{435}\\\frac{12}{551}&\frac{1}{551}\end{matrix}\right)\left(\begin{matrix}-31\\-2087\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{435}\left(-31\right)-\frac{1}{435}\left(-2087\right)\\\frac{12}{551}\left(-31\right)+\frac{1}{551}\left(-2087\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{104}{29}\\-\frac{2459}{551}\end{matrix}\right)
Do the arithmetic.
x=\frac{104}{29},y=-\frac{2459}{551}
Extract the matrix elements x and y.
15\left(104-12x\right)+323y=-527
Consider the second equation. Multiply both sides of the equation by 17.
1560-180x+323y=-527
Use the distributive property to multiply 15 by 104-12x.
-180x+323y=-527-1560
Subtract 1560 from both sides.
-180x+323y=-2087
Subtract 1560 from -527 to get -2087.
15x+19y=-31,-180x+323y=-2087
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-180\times 15x-180\times 19y=-180\left(-31\right),15\left(-180\right)x+15\times 323y=15\left(-2087\right)
To make 15x and -180x equal, multiply all terms on each side of the first equation by -180 and all terms on each side of the second by 15.
-2700x-3420y=5580,-2700x+4845y=-31305
Simplify.
-2700x+2700x-3420y-4845y=5580+31305
Subtract -2700x+4845y=-31305 from -2700x-3420y=5580 by subtracting like terms on each side of the equal sign.
-3420y-4845y=5580+31305
Add -2700x to 2700x. Terms -2700x and 2700x cancel out, leaving an equation with only one variable that can be solved.
-8265y=5580+31305
Add -3420y to -4845y.
-8265y=36885
Add 5580 to 31305.
y=-\frac{2459}{551}
Divide both sides by -8265.
-180x+323\left(-\frac{2459}{551}\right)=-2087
Substitute -\frac{2459}{551} for y in -180x+323y=-2087. Because the resulting equation contains only one variable, you can solve for x directly.
-180x-\frac{41803}{29}=-2087
Multiply 323 times -\frac{2459}{551}.
-180x=-\frac{18720}{29}
Add \frac{41803}{29} to both sides of the equation.
x=\frac{104}{29}
Divide both sides by -180.
x=\frac{104}{29},y=-\frac{2459}{551}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}