Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

15a-19b=-92,11a+2b=10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15a-19b=-92
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
15a=19b-92
Add 19b to both sides of the equation.
a=\frac{1}{15}\left(19b-92\right)
Divide both sides by 15.
a=\frac{19}{15}b-\frac{92}{15}
Multiply \frac{1}{15} times 19b-92.
11\left(\frac{19}{15}b-\frac{92}{15}\right)+2b=10
Substitute \frac{19b-92}{15} for a in the other equation, 11a+2b=10.
\frac{209}{15}b-\frac{1012}{15}+2b=10
Multiply 11 times \frac{19b-92}{15}.
\frac{239}{15}b-\frac{1012}{15}=10
Add \frac{209b}{15} to 2b.
\frac{239}{15}b=\frac{1162}{15}
Add \frac{1012}{15} to both sides of the equation.
b=\frac{1162}{239}
Divide both sides of the equation by \frac{239}{15}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{19}{15}\times \frac{1162}{239}-\frac{92}{15}
Substitute \frac{1162}{239} for b in a=\frac{19}{15}b-\frac{92}{15}. Because the resulting equation contains only one variable, you can solve for a directly.
a=\frac{22078}{3585}-\frac{92}{15}
Multiply \frac{19}{15} times \frac{1162}{239} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{6}{239}
Add -\frac{92}{15} to \frac{22078}{3585} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{6}{239},b=\frac{1162}{239}
The system is now solved.
15a-19b=-92,11a+2b=10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&-19\\11&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-92\\10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&-19\\11&2\end{matrix}\right))\left(\begin{matrix}15&-19\\11&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}15&-19\\11&2\end{matrix}\right))\left(\begin{matrix}-92\\10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&-19\\11&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}15&-19\\11&2\end{matrix}\right))\left(\begin{matrix}-92\\10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}15&-19\\11&2\end{matrix}\right))\left(\begin{matrix}-92\\10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15\times 2-\left(-19\times 11\right)}&-\frac{-19}{15\times 2-\left(-19\times 11\right)}\\-\frac{11}{15\times 2-\left(-19\times 11\right)}&\frac{15}{15\times 2-\left(-19\times 11\right)}\end{matrix}\right)\left(\begin{matrix}-92\\10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{239}&\frac{19}{239}\\-\frac{11}{239}&\frac{15}{239}\end{matrix}\right)\left(\begin{matrix}-92\\10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{239}\left(-92\right)+\frac{19}{239}\times 10\\-\frac{11}{239}\left(-92\right)+\frac{15}{239}\times 10\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{6}{239}\\\frac{1162}{239}\end{matrix}\right)
Do the arithmetic.
a=\frac{6}{239},b=\frac{1162}{239}
Extract the matrix elements a and b.
15a-19b=-92,11a+2b=10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11\times 15a+11\left(-19\right)b=11\left(-92\right),15\times 11a+15\times 2b=15\times 10
To make 15a and 11a equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 15.
165a-209b=-1012,165a+30b=150
Simplify.
165a-165a-209b-30b=-1012-150
Subtract 165a+30b=150 from 165a-209b=-1012 by subtracting like terms on each side of the equal sign.
-209b-30b=-1012-150
Add 165a to -165a. Terms 165a and -165a cancel out, leaving an equation with only one variable that can be solved.
-239b=-1012-150
Add -209b to -30b.
-239b=-1162
Add -1012 to -150.
b=\frac{1162}{239}
Divide both sides by -239.
11a+2\times \frac{1162}{239}=10
Substitute \frac{1162}{239} for b in 11a+2b=10. Because the resulting equation contains only one variable, you can solve for a directly.
11a+\frac{2324}{239}=10
Multiply 2 times \frac{1162}{239}.
11a=\frac{66}{239}
Subtract \frac{2324}{239} from both sides of the equation.
a=\frac{6}{239}
Divide both sides by 11.
a=\frac{6}{239},b=\frac{1162}{239}
The system is now solved.