Solve for x, y
x = \frac{78553}{840} = 93\frac{433}{840} \approx 93.51547619
y = -\frac{1403}{420} = -3\frac{143}{420} \approx -3.34047619
Graph
Share
Copied to clipboard
14x+77y=1052,22x+y=2054
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
14x+77y=1052
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
14x=-77y+1052
Subtract 77y from both sides of the equation.
x=\frac{1}{14}\left(-77y+1052\right)
Divide both sides by 14.
x=-\frac{11}{2}y+\frac{526}{7}
Multiply \frac{1}{14} times -77y+1052.
22\left(-\frac{11}{2}y+\frac{526}{7}\right)+y=2054
Substitute -\frac{11y}{2}+\frac{526}{7} for x in the other equation, 22x+y=2054.
-121y+\frac{11572}{7}+y=2054
Multiply 22 times -\frac{11y}{2}+\frac{526}{7}.
-120y+\frac{11572}{7}=2054
Add -121y to y.
-120y=\frac{2806}{7}
Subtract \frac{11572}{7} from both sides of the equation.
y=-\frac{1403}{420}
Divide both sides by -120.
x=-\frac{11}{2}\left(-\frac{1403}{420}\right)+\frac{526}{7}
Substitute -\frac{1403}{420} for y in x=-\frac{11}{2}y+\frac{526}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{15433}{840}+\frac{526}{7}
Multiply -\frac{11}{2} times -\frac{1403}{420} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{78553}{840}
Add \frac{526}{7} to \frac{15433}{840} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{78553}{840},y=-\frac{1403}{420}
The system is now solved.
14x+77y=1052,22x+y=2054
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}14&77\\22&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1052\\2054\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}14&77\\22&1\end{matrix}\right))\left(\begin{matrix}14&77\\22&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&77\\22&1\end{matrix}\right))\left(\begin{matrix}1052\\2054\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}14&77\\22&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&77\\22&1\end{matrix}\right))\left(\begin{matrix}1052\\2054\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&77\\22&1\end{matrix}\right))\left(\begin{matrix}1052\\2054\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14-77\times 22}&-\frac{77}{14-77\times 22}\\-\frac{22}{14-77\times 22}&\frac{14}{14-77\times 22}\end{matrix}\right)\left(\begin{matrix}1052\\2054\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{1680}&\frac{11}{240}\\\frac{11}{840}&-\frac{1}{120}\end{matrix}\right)\left(\begin{matrix}1052\\2054\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{1680}\times 1052+\frac{11}{240}\times 2054\\\frac{11}{840}\times 1052-\frac{1}{120}\times 2054\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{78553}{840}\\-\frac{1403}{420}\end{matrix}\right)
Do the arithmetic.
x=\frac{78553}{840},y=-\frac{1403}{420}
Extract the matrix elements x and y.
14x+77y=1052,22x+y=2054
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
22\times 14x+22\times 77y=22\times 1052,14\times 22x+14y=14\times 2054
To make 14x and 22x equal, multiply all terms on each side of the first equation by 22 and all terms on each side of the second by 14.
308x+1694y=23144,308x+14y=28756
Simplify.
308x-308x+1694y-14y=23144-28756
Subtract 308x+14y=28756 from 308x+1694y=23144 by subtracting like terms on each side of the equal sign.
1694y-14y=23144-28756
Add 308x to -308x. Terms 308x and -308x cancel out, leaving an equation with only one variable that can be solved.
1680y=23144-28756
Add 1694y to -14y.
1680y=-5612
Add 23144 to -28756.
y=-\frac{1403}{420}
Divide both sides by 1680.
22x-\frac{1403}{420}=2054
Substitute -\frac{1403}{420} for y in 22x+y=2054. Because the resulting equation contains only one variable, you can solve for x directly.
22x=\frac{864083}{420}
Add \frac{1403}{420} to both sides of the equation.
x=\frac{78553}{840}
Divide both sides by 22.
x=\frac{78553}{840},y=-\frac{1403}{420}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}