\left. \begin{array} { l } { 14 + \frac { 2 } { 7 } \cdot \frac { 1 } { 4 } = \frac { 1 } { 8 } } \\ { \frac { 3 } { 4 } : \frac { 2 } { 3 } - \frac { 3 } { 8 } = \frac { 1 } { 8 } } \end{array} \right.
Verify
false
Share
Copied to clipboard
14+\frac{2\times 1}{7\times 4}=\frac{1}{8}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Multiply \frac{2}{7} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
14+\frac{2}{28}=\frac{1}{8}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Do the multiplications in the fraction \frac{2\times 1}{7\times 4}.
14+\frac{1}{14}=\frac{1}{8}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Reduce the fraction \frac{2}{28} to lowest terms by extracting and canceling out 2.
\frac{196}{14}+\frac{1}{14}=\frac{1}{8}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Convert 14 to fraction \frac{196}{14}.
\frac{196+1}{14}=\frac{1}{8}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Since \frac{196}{14} and \frac{1}{14} have the same denominator, add them by adding their numerators.
\frac{197}{14}=\frac{1}{8}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Add 196 and 1 to get 197.
\frac{788}{56}=\frac{7}{56}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Least common multiple of 14 and 8 is 56. Convert \frac{197}{14} and \frac{1}{8} to fractions with denominator 56.
\text{false}\text{ and }\frac{\frac{3}{4}}{\frac{2}{3}}-\frac{3}{8}=\frac{1}{8}
Compare \frac{788}{56} and \frac{7}{56}.
\text{false}\text{ and }\frac{3}{4}\times \frac{3}{2}-\frac{3}{8}=\frac{1}{8}
Divide \frac{3}{4} by \frac{2}{3} by multiplying \frac{3}{4} by the reciprocal of \frac{2}{3}.
\text{false}\text{ and }\frac{3\times 3}{4\times 2}-\frac{3}{8}=\frac{1}{8}
Multiply \frac{3}{4} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\text{false}\text{ and }\frac{9}{8}-\frac{3}{8}=\frac{1}{8}
Do the multiplications in the fraction \frac{3\times 3}{4\times 2}.
\text{false}\text{ and }\frac{9-3}{8}=\frac{1}{8}
Since \frac{9}{8} and \frac{3}{8} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }\frac{6}{8}=\frac{1}{8}
Subtract 3 from 9 to get 6.
\text{false}\text{ and }\text{false}
Compare \frac{6}{8} and \frac{1}{8}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}