Solve for x, y, z
x = \frac{148}{69} = 2\frac{10}{69} \approx 2.144927536
y = \frac{337}{69} = 4\frac{61}{69} \approx 4.884057971
z = \frac{341}{69} = 4\frac{65}{69} \approx 4.942028986
Share
Copied to clipboard
y=13x-23
Solve 13x-y=23 for y.
2x+3\left(13x-23\right)-z=14 13x-23-2z=-5
Substitute 13x-23 for y in the second and third equation.
x=\frac{83}{41}+\frac{1}{41}z z=\frac{13}{2}x-9
Solve these equations for x and z respectively.
z=\frac{13}{2}\left(\frac{83}{41}+\frac{1}{41}z\right)-9
Substitute \frac{83}{41}+\frac{1}{41}z for x in the equation z=\frac{13}{2}x-9.
z=\frac{341}{69}
Solve z=\frac{13}{2}\left(\frac{83}{41}+\frac{1}{41}z\right)-9 for z.
x=\frac{83}{41}+\frac{1}{41}\times \frac{341}{69}
Substitute \frac{341}{69} for z in the equation x=\frac{83}{41}+\frac{1}{41}z.
x=\frac{148}{69}
Calculate x from x=\frac{83}{41}+\frac{1}{41}\times \frac{341}{69}.
y=13\times \frac{148}{69}-23
Substitute \frac{148}{69} for x in the equation y=13x-23.
y=\frac{337}{69}
Calculate y from y=13\times \frac{148}{69}-23.
x=\frac{148}{69} y=\frac{337}{69} z=\frac{341}{69}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}