Solve for x, y
x = \frac{8294}{147} = 56\frac{62}{147} \approx 56.421768707
y = \frac{5024}{147} = 34\frac{26}{147} \approx 34.176870748
Graph
Share
Copied to clipboard
13x-31y=-326,25x-37y=146
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
13x-31y=-326
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
13x=31y-326
Add 31y to both sides of the equation.
x=\frac{1}{13}\left(31y-326\right)
Divide both sides by 13.
x=\frac{31}{13}y-\frac{326}{13}
Multiply \frac{1}{13} times 31y-326.
25\left(\frac{31}{13}y-\frac{326}{13}\right)-37y=146
Substitute \frac{31y-326}{13} for x in the other equation, 25x-37y=146.
\frac{775}{13}y-\frac{8150}{13}-37y=146
Multiply 25 times \frac{31y-326}{13}.
\frac{294}{13}y-\frac{8150}{13}=146
Add \frac{775y}{13} to -37y.
\frac{294}{13}y=\frac{10048}{13}
Add \frac{8150}{13} to both sides of the equation.
y=\frac{5024}{147}
Divide both sides of the equation by \frac{294}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{31}{13}\times \frac{5024}{147}-\frac{326}{13}
Substitute \frac{5024}{147} for y in x=\frac{31}{13}y-\frac{326}{13}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{155744}{1911}-\frac{326}{13}
Multiply \frac{31}{13} times \frac{5024}{147} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{8294}{147}
Add -\frac{326}{13} to \frac{155744}{1911} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{8294}{147},y=\frac{5024}{147}
The system is now solved.
13x-31y=-326,25x-37y=146
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}13&-31\\25&-37\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-326\\146\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}13&-31\\25&-37\end{matrix}\right))\left(\begin{matrix}13&-31\\25&-37\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-31\\25&-37\end{matrix}\right))\left(\begin{matrix}-326\\146\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}13&-31\\25&-37\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-31\\25&-37\end{matrix}\right))\left(\begin{matrix}-326\\146\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-31\\25&-37\end{matrix}\right))\left(\begin{matrix}-326\\146\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{37}{13\left(-37\right)-\left(-31\times 25\right)}&-\frac{-31}{13\left(-37\right)-\left(-31\times 25\right)}\\-\frac{25}{13\left(-37\right)-\left(-31\times 25\right)}&\frac{13}{13\left(-37\right)-\left(-31\times 25\right)}\end{matrix}\right)\left(\begin{matrix}-326\\146\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{37}{294}&\frac{31}{294}\\-\frac{25}{294}&\frac{13}{294}\end{matrix}\right)\left(\begin{matrix}-326\\146\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{37}{294}\left(-326\right)+\frac{31}{294}\times 146\\-\frac{25}{294}\left(-326\right)+\frac{13}{294}\times 146\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8294}{147}\\\frac{5024}{147}\end{matrix}\right)
Do the arithmetic.
x=\frac{8294}{147},y=\frac{5024}{147}
Extract the matrix elements x and y.
13x-31y=-326,25x-37y=146
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25\times 13x+25\left(-31\right)y=25\left(-326\right),13\times 25x+13\left(-37\right)y=13\times 146
To make 13x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 13.
325x-775y=-8150,325x-481y=1898
Simplify.
325x-325x-775y+481y=-8150-1898
Subtract 325x-481y=1898 from 325x-775y=-8150 by subtracting like terms on each side of the equal sign.
-775y+481y=-8150-1898
Add 325x to -325x. Terms 325x and -325x cancel out, leaving an equation with only one variable that can be solved.
-294y=-8150-1898
Add -775y to 481y.
-294y=-10048
Add -8150 to -1898.
y=\frac{5024}{147}
Divide both sides by -294.
25x-37\times \frac{5024}{147}=146
Substitute \frac{5024}{147} for y in 25x-37y=146. Because the resulting equation contains only one variable, you can solve for x directly.
25x-\frac{185888}{147}=146
Multiply -37 times \frac{5024}{147}.
25x=\frac{207350}{147}
Add \frac{185888}{147} to both sides of the equation.
x=\frac{8294}{147}
Divide both sides by 25.
x=\frac{8294}{147},y=\frac{5024}{147}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}