Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x+11y=617,8x+11y=477
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
13x+11y=617
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
13x=-11y+617
Subtract 11y from both sides of the equation.
x=\frac{1}{13}\left(-11y+617\right)
Divide both sides by 13.
x=-\frac{11}{13}y+\frac{617}{13}
Multiply \frac{1}{13} times -11y+617.
8\left(-\frac{11}{13}y+\frac{617}{13}\right)+11y=477
Substitute \frac{-11y+617}{13} for x in the other equation, 8x+11y=477.
-\frac{88}{13}y+\frac{4936}{13}+11y=477
Multiply 8 times \frac{-11y+617}{13}.
\frac{55}{13}y+\frac{4936}{13}=477
Add -\frac{88y}{13} to 11y.
\frac{55}{13}y=\frac{1265}{13}
Subtract \frac{4936}{13} from both sides of the equation.
y=23
Divide both sides of the equation by \frac{55}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{11}{13}\times 23+\frac{617}{13}
Substitute 23 for y in x=-\frac{11}{13}y+\frac{617}{13}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-253+617}{13}
Multiply -\frac{11}{13} times 23.
x=28
Add \frac{617}{13} to -\frac{253}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=28,y=23
The system is now solved.
13x+11y=617,8x+11y=477
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}13&11\\8&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}617\\477\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}13&11\\8&11\end{matrix}\right))\left(\begin{matrix}13&11\\8&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&11\\8&11\end{matrix}\right))\left(\begin{matrix}617\\477\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}13&11\\8&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&11\\8&11\end{matrix}\right))\left(\begin{matrix}617\\477\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&11\\8&11\end{matrix}\right))\left(\begin{matrix}617\\477\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{13\times 11-11\times 8}&-\frac{11}{13\times 11-11\times 8}\\-\frac{8}{13\times 11-11\times 8}&\frac{13}{13\times 11-11\times 8}\end{matrix}\right)\left(\begin{matrix}617\\477\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{1}{5}\\-\frac{8}{55}&\frac{13}{55}\end{matrix}\right)\left(\begin{matrix}617\\477\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 617-\frac{1}{5}\times 477\\-\frac{8}{55}\times 617+\frac{13}{55}\times 477\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\23\end{matrix}\right)
Do the arithmetic.
x=28,y=23
Extract the matrix elements x and y.
13x+11y=617,8x+11y=477
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
13x-8x+11y-11y=617-477
Subtract 8x+11y=477 from 13x+11y=617 by subtracting like terms on each side of the equal sign.
13x-8x=617-477
Add 11y to -11y. Terms 11y and -11y cancel out, leaving an equation with only one variable that can be solved.
5x=617-477
Add 13x to -8x.
5x=140
Add 617 to -477.
x=28
Divide both sides by 5.
8\times 28+11y=477
Substitute 28 for x in 8x+11y=477. Because the resulting equation contains only one variable, you can solve for y directly.
224+11y=477
Multiply 8 times 28.
11y=253
Subtract 224 from both sides of the equation.
y=23
Divide both sides by 11.
x=28,y=23
The system is now solved.