Solve for x
x=20
x = \frac{3020}{9} = 335\frac{5}{9} \approx 335.555555556
Graph
Share
Copied to clipboard
6400x-18x^{2}-400=120400
Swap sides so that all variable terms are on the left hand side.
6400x-18x^{2}-400-120400=0
Subtract 120400 from both sides.
6400x-18x^{2}-120800=0
Subtract 120400 from -400 to get -120800.
-18x^{2}+6400x-120800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6400±\sqrt{6400^{2}-4\left(-18\right)\left(-120800\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 6400 for b, and -120800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6400±\sqrt{40960000-4\left(-18\right)\left(-120800\right)}}{2\left(-18\right)}
Square 6400.
x=\frac{-6400±\sqrt{40960000+72\left(-120800\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-6400±\sqrt{40960000-8697600}}{2\left(-18\right)}
Multiply 72 times -120800.
x=\frac{-6400±\sqrt{32262400}}{2\left(-18\right)}
Add 40960000 to -8697600.
x=\frac{-6400±5680}{2\left(-18\right)}
Take the square root of 32262400.
x=\frac{-6400±5680}{-36}
Multiply 2 times -18.
x=-\frac{720}{-36}
Now solve the equation x=\frac{-6400±5680}{-36} when ± is plus. Add -6400 to 5680.
x=20
Divide -720 by -36.
x=-\frac{12080}{-36}
Now solve the equation x=\frac{-6400±5680}{-36} when ± is minus. Subtract 5680 from -6400.
x=\frac{3020}{9}
Reduce the fraction \frac{-12080}{-36} to lowest terms by extracting and canceling out 4.
x=20 x=\frac{3020}{9}
The equation is now solved.
6400x-18x^{2}-400=120400
Swap sides so that all variable terms are on the left hand side.
6400x-18x^{2}=120400+400
Add 400 to both sides.
6400x-18x^{2}=120800
Add 120400 and 400 to get 120800.
-18x^{2}+6400x=120800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-18x^{2}+6400x}{-18}=\frac{120800}{-18}
Divide both sides by -18.
x^{2}+\frac{6400}{-18}x=\frac{120800}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{3200}{9}x=\frac{120800}{-18}
Reduce the fraction \frac{6400}{-18} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3200}{9}x=-\frac{60400}{9}
Reduce the fraction \frac{120800}{-18} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3200}{9}x+\left(-\frac{1600}{9}\right)^{2}=-\frac{60400}{9}+\left(-\frac{1600}{9}\right)^{2}
Divide -\frac{3200}{9}, the coefficient of the x term, by 2 to get -\frac{1600}{9}. Then add the square of -\frac{1600}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3200}{9}x+\frac{2560000}{81}=-\frac{60400}{9}+\frac{2560000}{81}
Square -\frac{1600}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3200}{9}x+\frac{2560000}{81}=\frac{2016400}{81}
Add -\frac{60400}{9} to \frac{2560000}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1600}{9}\right)^{2}=\frac{2016400}{81}
Factor x^{2}-\frac{3200}{9}x+\frac{2560000}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1600}{9}\right)^{2}}=\sqrt{\frac{2016400}{81}}
Take the square root of both sides of the equation.
x-\frac{1600}{9}=\frac{1420}{9} x-\frac{1600}{9}=-\frac{1420}{9}
Simplify.
x=\frac{3020}{9} x=20
Add \frac{1600}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}