Evaluate
\frac{159}{28}\approx 5.678571429
Factor
\frac{3 \cdot 53}{7 \cdot 2 ^ {2}} = 5\frac{19}{28} = 5.678571428571429
Share
Copied to clipboard
\frac{25}{2}\times \frac{5}{18}-\frac{5}{14}\times \frac{5}{18}+8.3\times \frac{5}{18}
Convert decimal number 12.5 to fraction \frac{125}{10}. Reduce the fraction \frac{125}{10} to lowest terms by extracting and canceling out 5.
\frac{25\times 5}{2\times 18}-\frac{5}{14}\times \frac{5}{18}+8.3\times \frac{5}{18}
Multiply \frac{25}{2} times \frac{5}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{125}{36}-\frac{5}{14}\times \frac{5}{18}+8.3\times \frac{5}{18}
Do the multiplications in the fraction \frac{25\times 5}{2\times 18}.
\frac{125}{36}-\frac{5\times 5}{14\times 18}+8.3\times \frac{5}{18}
Multiply \frac{5}{14} times \frac{5}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{125}{36}-\frac{25}{252}+8.3\times \frac{5}{18}
Do the multiplications in the fraction \frac{5\times 5}{14\times 18}.
\frac{875}{252}-\frac{25}{252}+8.3\times \frac{5}{18}
Least common multiple of 36 and 252 is 252. Convert \frac{125}{36} and \frac{25}{252} to fractions with denominator 252.
\frac{875-25}{252}+8.3\times \frac{5}{18}
Since \frac{875}{252} and \frac{25}{252} have the same denominator, subtract them by subtracting their numerators.
\frac{850}{252}+8.3\times \frac{5}{18}
Subtract 25 from 875 to get 850.
\frac{425}{126}+8.3\times \frac{5}{18}
Reduce the fraction \frac{850}{252} to lowest terms by extracting and canceling out 2.
\frac{425}{126}+\frac{83}{10}\times \frac{5}{18}
Convert decimal number 8.3 to fraction \frac{83}{10}.
\frac{425}{126}+\frac{83\times 5}{10\times 18}
Multiply \frac{83}{10} times \frac{5}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{425}{126}+\frac{415}{180}
Do the multiplications in the fraction \frac{83\times 5}{10\times 18}.
\frac{425}{126}+\frac{83}{36}
Reduce the fraction \frac{415}{180} to lowest terms by extracting and canceling out 5.
\frac{850}{252}+\frac{581}{252}
Least common multiple of 126 and 36 is 252. Convert \frac{425}{126} and \frac{83}{36} to fractions with denominator 252.
\frac{850+581}{252}
Since \frac{850}{252} and \frac{581}{252} have the same denominator, add them by adding their numerators.
\frac{1431}{252}
Add 850 and 581 to get 1431.
\frac{159}{28}
Reduce the fraction \frac{1431}{252} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}