Solve for x, y
x=\frac{1237}{2261}\approx 0.547103052
y=-\frac{1833}{2261}\approx -0.810703229
Graph
Share
Copied to clipboard
110x+73y=1,37x+4y=17
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
110x+73y=1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
110x=-73y+1
Subtract 73y from both sides of the equation.
x=\frac{1}{110}\left(-73y+1\right)
Divide both sides by 110.
x=-\frac{73}{110}y+\frac{1}{110}
Multiply \frac{1}{110} times -73y+1.
37\left(-\frac{73}{110}y+\frac{1}{110}\right)+4y=17
Substitute \frac{-73y+1}{110} for x in the other equation, 37x+4y=17.
-\frac{2701}{110}y+\frac{37}{110}+4y=17
Multiply 37 times \frac{-73y+1}{110}.
-\frac{2261}{110}y+\frac{37}{110}=17
Add -\frac{2701y}{110} to 4y.
-\frac{2261}{110}y=\frac{1833}{110}
Subtract \frac{37}{110} from both sides of the equation.
y=-\frac{1833}{2261}
Divide both sides of the equation by -\frac{2261}{110}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{73}{110}\left(-\frac{1833}{2261}\right)+\frac{1}{110}
Substitute -\frac{1833}{2261} for y in x=-\frac{73}{110}y+\frac{1}{110}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{133809}{248710}+\frac{1}{110}
Multiply -\frac{73}{110} times -\frac{1833}{2261} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1237}{2261}
Add \frac{1}{110} to \frac{133809}{248710} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1237}{2261},y=-\frac{1833}{2261}
The system is now solved.
110x+73y=1,37x+4y=17
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}110&73\\37&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\17\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}110&73\\37&4\end{matrix}\right))\left(\begin{matrix}110&73\\37&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}110&73\\37&4\end{matrix}\right))\left(\begin{matrix}1\\17\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}110&73\\37&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}110&73\\37&4\end{matrix}\right))\left(\begin{matrix}1\\17\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}110&73\\37&4\end{matrix}\right))\left(\begin{matrix}1\\17\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{110\times 4-73\times 37}&-\frac{73}{110\times 4-73\times 37}\\-\frac{37}{110\times 4-73\times 37}&\frac{110}{110\times 4-73\times 37}\end{matrix}\right)\left(\begin{matrix}1\\17\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2261}&\frac{73}{2261}\\\frac{37}{2261}&-\frac{110}{2261}\end{matrix}\right)\left(\begin{matrix}1\\17\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2261}+\frac{73}{2261}\times 17\\\frac{37}{2261}-\frac{110}{2261}\times 17\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1237}{2261}\\-\frac{1833}{2261}\end{matrix}\right)
Do the arithmetic.
x=\frac{1237}{2261},y=-\frac{1833}{2261}
Extract the matrix elements x and y.
110x+73y=1,37x+4y=17
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
37\times 110x+37\times 73y=37,110\times 37x+110\times 4y=110\times 17
To make 110x and 37x equal, multiply all terms on each side of the first equation by 37 and all terms on each side of the second by 110.
4070x+2701y=37,4070x+440y=1870
Simplify.
4070x-4070x+2701y-440y=37-1870
Subtract 4070x+440y=1870 from 4070x+2701y=37 by subtracting like terms on each side of the equal sign.
2701y-440y=37-1870
Add 4070x to -4070x. Terms 4070x and -4070x cancel out, leaving an equation with only one variable that can be solved.
2261y=37-1870
Add 2701y to -440y.
2261y=-1833
Add 37 to -1870.
y=-\frac{1833}{2261}
Divide both sides by 2261.
37x+4\left(-\frac{1833}{2261}\right)=17
Substitute -\frac{1833}{2261} for y in 37x+4y=17. Because the resulting equation contains only one variable, you can solve for x directly.
37x-\frac{7332}{2261}=17
Multiply 4 times -\frac{1833}{2261}.
37x=\frac{45769}{2261}
Add \frac{7332}{2261} to both sides of the equation.
x=\frac{1237}{2261}
Divide both sides by 37.
x=\frac{1237}{2261},y=-\frac{1833}{2261}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}