Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

11x+6y=28,7x-4y=10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
11x+6y=28
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
11x=-6y+28
Subtract 6y from both sides of the equation.
x=\frac{1}{11}\left(-6y+28\right)
Divide both sides by 11.
x=-\frac{6}{11}y+\frac{28}{11}
Multiply \frac{1}{11} times -6y+28.
7\left(-\frac{6}{11}y+\frac{28}{11}\right)-4y=10
Substitute \frac{-6y+28}{11} for x in the other equation, 7x-4y=10.
-\frac{42}{11}y+\frac{196}{11}-4y=10
Multiply 7 times \frac{-6y+28}{11}.
-\frac{86}{11}y+\frac{196}{11}=10
Add -\frac{42y}{11} to -4y.
-\frac{86}{11}y=-\frac{86}{11}
Subtract \frac{196}{11} from both sides of the equation.
y=1
Divide both sides of the equation by -\frac{86}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-6+28}{11}
Substitute 1 for y in x=-\frac{6}{11}y+\frac{28}{11}. Because the resulting equation contains only one variable, you can solve for x directly.
x=2
Add \frac{28}{11} to -\frac{6}{11} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2,y=1
The system is now solved.
11x+6y=28,7x-4y=10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}11&6\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}11&6\\7&-4\end{matrix}\right))\left(\begin{matrix}11&6\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&6\\7&-4\end{matrix}\right))\left(\begin{matrix}28\\10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}11&6\\7&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&6\\7&-4\end{matrix}\right))\left(\begin{matrix}28\\10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&6\\7&-4\end{matrix}\right))\left(\begin{matrix}28\\10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11\left(-4\right)-6\times 7}&-\frac{6}{11\left(-4\right)-6\times 7}\\-\frac{7}{11\left(-4\right)-6\times 7}&\frac{11}{11\left(-4\right)-6\times 7}\end{matrix}\right)\left(\begin{matrix}28\\10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{43}&\frac{3}{43}\\\frac{7}{86}&-\frac{11}{86}\end{matrix}\right)\left(\begin{matrix}28\\10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{43}\times 28+\frac{3}{43}\times 10\\\frac{7}{86}\times 28-\frac{11}{86}\times 10\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Do the arithmetic.
x=2,y=1
Extract the matrix elements x and y.
11x+6y=28,7x-4y=10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 11x+7\times 6y=7\times 28,11\times 7x+11\left(-4\right)y=11\times 10
To make 11x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 11.
77x+42y=196,77x-44y=110
Simplify.
77x-77x+42y+44y=196-110
Subtract 77x-44y=110 from 77x+42y=196 by subtracting like terms on each side of the equal sign.
42y+44y=196-110
Add 77x to -77x. Terms 77x and -77x cancel out, leaving an equation with only one variable that can be solved.
86y=196-110
Add 42y to 44y.
86y=86
Add 196 to -110.
y=1
Divide both sides by 86.
7x-4=10
Substitute 1 for y in 7x-4y=10. Because the resulting equation contains only one variable, you can solve for x directly.
7x=14
Add 4 to both sides of the equation.
x=2
Divide both sides by 7.
x=2,y=1
The system is now solved.