Solve for r_w, m
r_{w}=9000000
m = \frac{18000000}{271} = 66420\frac{180}{271} \approx 66420.664206642
Share
Copied to clipboard
150000\times 60=r_{w}
Consider the first equation. Multiply both sides of the equation by 150.
9000000=r_{w}
Multiply 150000 and 60 to get 9000000.
r_{w}=9000000
Swap sides so that all variable terms are on the left hand side.
9000000=135.5m
Consider the second equation. Insert the known values of variables into the equation.
\frac{9000000}{135.5}=m
Divide both sides by 135.5.
\frac{90000000}{1355}=m
Expand \frac{9000000}{135.5} by multiplying both numerator and the denominator by 10.
\frac{18000000}{271}=m
Reduce the fraction \frac{90000000}{1355} to lowest terms by extracting and canceling out 5.
m=\frac{18000000}{271}
Swap sides so that all variable terms are on the left hand side.
r_{w}=9000000 m=\frac{18000000}{271}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}