Skip to main content
Solve for m, b
Tick mark Image

Similar Problems from Web Search

Share

95m+b=100
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
120m+b=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
95m+b=100,120m+b=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
95m+b=100
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
95m=-b+100
Subtract b from both sides of the equation.
m=\frac{1}{95}\left(-b+100\right)
Divide both sides by 95.
m=-\frac{1}{95}b+\frac{20}{19}
Multiply \frac{1}{95} times -b+100.
120\left(-\frac{1}{95}b+\frac{20}{19}\right)+b=0
Substitute -\frac{b}{95}+\frac{20}{19} for m in the other equation, 120m+b=0.
-\frac{24}{19}b+\frac{2400}{19}+b=0
Multiply 120 times -\frac{b}{95}+\frac{20}{19}.
-\frac{5}{19}b+\frac{2400}{19}=0
Add -\frac{24b}{19} to b.
-\frac{5}{19}b=-\frac{2400}{19}
Subtract \frac{2400}{19} from both sides of the equation.
b=480
Divide both sides of the equation by -\frac{5}{19}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=-\frac{1}{95}\times 480+\frac{20}{19}
Substitute 480 for b in m=-\frac{1}{95}b+\frac{20}{19}. Because the resulting equation contains only one variable, you can solve for m directly.
m=\frac{-96+20}{19}
Multiply -\frac{1}{95} times 480.
m=-4
Add \frac{20}{19} to -\frac{96}{19} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=-4,b=480
The system is now solved.
95m+b=100
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
120m+b=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
95m+b=100,120m+b=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}95&1\\120&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}100\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}95&1\\120&1\end{matrix}\right))\left(\begin{matrix}95&1\\120&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}95&1\\120&1\end{matrix}\right))\left(\begin{matrix}100\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}95&1\\120&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}95&1\\120&1\end{matrix}\right))\left(\begin{matrix}100\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}95&1\\120&1\end{matrix}\right))\left(\begin{matrix}100\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{95-120}&-\frac{1}{95-120}\\-\frac{120}{95-120}&\frac{95}{95-120}\end{matrix}\right)\left(\begin{matrix}100\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}&\frac{1}{25}\\\frac{24}{5}&-\frac{19}{5}\end{matrix}\right)\left(\begin{matrix}100\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}\times 100\\\frac{24}{5}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}-4\\480\end{matrix}\right)
Do the arithmetic.
m=-4,b=480
Extract the matrix elements m and b.
95m+b=100
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
120m+b=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
95m+b=100,120m+b=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
95m-120m+b-b=100
Subtract 120m+b=0 from 95m+b=100 by subtracting like terms on each side of the equal sign.
95m-120m=100
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-25m=100
Add 95m to -120m.
m=-4
Divide both sides by -25.
120\left(-4\right)+b=0
Substitute -4 for m in 120m+b=0. Because the resulting equation contains only one variable, you can solve for b directly.
-480+b=0
Multiply 120 times -4.
b=480
Add 480 to both sides of the equation.
m=-4,b=480
The system is now solved.