Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+3y=174,3x+10y=125
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+3y=174
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-3y+174
Subtract 3y from both sides of the equation.
x=\frac{1}{10}\left(-3y+174\right)
Divide both sides by 10.
x=-\frac{3}{10}y+\frac{87}{5}
Multiply \frac{1}{10} times -3y+174.
3\left(-\frac{3}{10}y+\frac{87}{5}\right)+10y=125
Substitute -\frac{3y}{10}+\frac{87}{5} for x in the other equation, 3x+10y=125.
-\frac{9}{10}y+\frac{261}{5}+10y=125
Multiply 3 times -\frac{3y}{10}+\frac{87}{5}.
\frac{91}{10}y+\frac{261}{5}=125
Add -\frac{9y}{10} to 10y.
\frac{91}{10}y=\frac{364}{5}
Subtract \frac{261}{5} from both sides of the equation.
y=8
Divide both sides of the equation by \frac{91}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{10}\times 8+\frac{87}{5}
Substitute 8 for y in x=-\frac{3}{10}y+\frac{87}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-12+87}{5}
Multiply -\frac{3}{10} times 8.
x=15
Add \frac{87}{5} to -\frac{12}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=15,y=8
The system is now solved.
10x+3y=174,3x+10y=125
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&3\\3&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}174\\125\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&3\\3&10\end{matrix}\right))\left(\begin{matrix}10&3\\3&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\3&10\end{matrix}\right))\left(\begin{matrix}174\\125\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&3\\3&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\3&10\end{matrix}\right))\left(\begin{matrix}174\\125\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&3\\3&10\end{matrix}\right))\left(\begin{matrix}174\\125\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10\times 10-3\times 3}&-\frac{3}{10\times 10-3\times 3}\\-\frac{3}{10\times 10-3\times 3}&\frac{10}{10\times 10-3\times 3}\end{matrix}\right)\left(\begin{matrix}174\\125\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{91}&-\frac{3}{91}\\-\frac{3}{91}&\frac{10}{91}\end{matrix}\right)\left(\begin{matrix}174\\125\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{91}\times 174-\frac{3}{91}\times 125\\-\frac{3}{91}\times 174+\frac{10}{91}\times 125\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\8\end{matrix}\right)
Do the arithmetic.
x=15,y=8
Extract the matrix elements x and y.
10x+3y=174,3x+10y=125
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 10x+3\times 3y=3\times 174,10\times 3x+10\times 10y=10\times 125
To make 10x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 10.
30x+9y=522,30x+100y=1250
Simplify.
30x-30x+9y-100y=522-1250
Subtract 30x+100y=1250 from 30x+9y=522 by subtracting like terms on each side of the equal sign.
9y-100y=522-1250
Add 30x to -30x. Terms 30x and -30x cancel out, leaving an equation with only one variable that can be solved.
-91y=522-1250
Add 9y to -100y.
-91y=-728
Add 522 to -1250.
y=8
Divide both sides by -91.
3x+10\times 8=125
Substitute 8 for y in 3x+10y=125. Because the resulting equation contains only one variable, you can solve for x directly.
3x+80=125
Multiply 10 times 8.
3x=45
Subtract 80 from both sides of the equation.
x=15
Divide both sides by 3.
x=15,y=8
The system is now solved.