Solve for x, y
x=8
y=8
Graph
Share
Copied to clipboard
10x+20y=240,20x+10y=240
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+20y=240
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-20y+240
Subtract 20y from both sides of the equation.
x=\frac{1}{10}\left(-20y+240\right)
Divide both sides by 10.
x=-2y+24
Multiply \frac{1}{10} times -20y+240.
20\left(-2y+24\right)+10y=240
Substitute -2y+24 for x in the other equation, 20x+10y=240.
-40y+480+10y=240
Multiply 20 times -2y+24.
-30y+480=240
Add -40y to 10y.
-30y=-240
Subtract 480 from both sides of the equation.
y=8
Divide both sides by -30.
x=-2\times 8+24
Substitute 8 for y in x=-2y+24. Because the resulting equation contains only one variable, you can solve for x directly.
x=-16+24
Multiply -2 times 8.
x=8
Add 24 to -16.
x=8,y=8
The system is now solved.
10x+20y=240,20x+10y=240
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&20\\20&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\240\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}10&20\\20&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}240\\240\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&20\\20&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}240\\240\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&20\\20&10\end{matrix}\right))\left(\begin{matrix}240\\240\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10\times 10-20\times 20}&-\frac{20}{10\times 10-20\times 20}\\-\frac{20}{10\times 10-20\times 20}&\frac{10}{10\times 10-20\times 20}\end{matrix}\right)\left(\begin{matrix}240\\240\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}&\frac{1}{15}\\\frac{1}{15}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}240\\240\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}\times 240+\frac{1}{15}\times 240\\\frac{1}{15}\times 240-\frac{1}{30}\times 240\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\8\end{matrix}\right)
Do the arithmetic.
x=8,y=8
Extract the matrix elements x and y.
10x+20y=240,20x+10y=240
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 10x+20\times 20y=20\times 240,10\times 20x+10\times 10y=10\times 240
To make 10x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 10.
200x+400y=4800,200x+100y=2400
Simplify.
200x-200x+400y-100y=4800-2400
Subtract 200x+100y=2400 from 200x+400y=4800 by subtracting like terms on each side of the equal sign.
400y-100y=4800-2400
Add 200x to -200x. Terms 200x and -200x cancel out, leaving an equation with only one variable that can be solved.
300y=4800-2400
Add 400y to -100y.
300y=2400
Add 4800 to -2400.
y=8
Divide both sides by 300.
20x+10\times 8=240
Substitute 8 for y in 20x+10y=240. Because the resulting equation contains only one variable, you can solve for x directly.
20x+80=240
Multiply 10 times 8.
20x=160
Subtract 80 from both sides of the equation.
x=8
Divide both sides by 20.
x=8,y=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}