Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+18y=-11,16x-9y=-5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+18y=-11
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-18y-11
Subtract 18y from both sides of the equation.
x=\frac{1}{10}\left(-18y-11\right)
Divide both sides by 10.
x=-\frac{9}{5}y-\frac{11}{10}
Multiply \frac{1}{10} times -18y-11.
16\left(-\frac{9}{5}y-\frac{11}{10}\right)-9y=-5
Substitute -\frac{9y}{5}-\frac{11}{10} for x in the other equation, 16x-9y=-5.
-\frac{144}{5}y-\frac{88}{5}-9y=-5
Multiply 16 times -\frac{9y}{5}-\frac{11}{10}.
-\frac{189}{5}y-\frac{88}{5}=-5
Add -\frac{144y}{5} to -9y.
-\frac{189}{5}y=\frac{63}{5}
Add \frac{88}{5} to both sides of the equation.
y=-\frac{1}{3}
Divide both sides of the equation by -\frac{189}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{9}{5}\left(-\frac{1}{3}\right)-\frac{11}{10}
Substitute -\frac{1}{3} for y in x=-\frac{9}{5}y-\frac{11}{10}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{3}{5}-\frac{11}{10}
Multiply -\frac{9}{5} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{2}
Add -\frac{11}{10} to \frac{3}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{2},y=-\frac{1}{3}
The system is now solved.
10x+18y=-11,16x-9y=-5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&18\\16&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}10&18\\16&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}-11\\-5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&18\\16&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}-11\\-5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&18\\16&-9\end{matrix}\right))\left(\begin{matrix}-11\\-5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{10\left(-9\right)-18\times 16}&-\frac{18}{10\left(-9\right)-18\times 16}\\-\frac{16}{10\left(-9\right)-18\times 16}&\frac{10}{10\left(-9\right)-18\times 16}\end{matrix}\right)\left(\begin{matrix}-11\\-5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{42}&\frac{1}{21}\\\frac{8}{189}&-\frac{5}{189}\end{matrix}\right)\left(\begin{matrix}-11\\-5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{42}\left(-11\right)+\frac{1}{21}\left(-5\right)\\\frac{8}{189}\left(-11\right)-\frac{5}{189}\left(-5\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\-\frac{1}{3}\end{matrix}\right)
Do the arithmetic.
x=-\frac{1}{2},y=-\frac{1}{3}
Extract the matrix elements x and y.
10x+18y=-11,16x-9y=-5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
16\times 10x+16\times 18y=16\left(-11\right),10\times 16x+10\left(-9\right)y=10\left(-5\right)
To make 10x and 16x equal, multiply all terms on each side of the first equation by 16 and all terms on each side of the second by 10.
160x+288y=-176,160x-90y=-50
Simplify.
160x-160x+288y+90y=-176+50
Subtract 160x-90y=-50 from 160x+288y=-176 by subtracting like terms on each side of the equal sign.
288y+90y=-176+50
Add 160x to -160x. Terms 160x and -160x cancel out, leaving an equation with only one variable that can be solved.
378y=-176+50
Add 288y to 90y.
378y=-126
Add -176 to 50.
y=-\frac{1}{3}
Divide both sides by 378.
16x-9\left(-\frac{1}{3}\right)=-5
Substitute -\frac{1}{3} for y in 16x-9y=-5. Because the resulting equation contains only one variable, you can solve for x directly.
16x+3=-5
Multiply -9 times -\frac{1}{3}.
16x=-8
Subtract 3 from both sides of the equation.
x=-\frac{1}{2}
Divide both sides by 16.
x=-\frac{1}{2},y=-\frac{1}{3}
The system is now solved.