Solve for x, y
x=-5
y=19
Graph
Share
Copied to clipboard
10x+15y=235,x+y=14
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+15y=235
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-15y+235
Subtract 15y from both sides of the equation.
x=\frac{1}{10}\left(-15y+235\right)
Divide both sides by 10.
x=-\frac{3}{2}y+\frac{47}{2}
Multiply \frac{1}{10} times -15y+235.
-\frac{3}{2}y+\frac{47}{2}+y=14
Substitute \frac{-3y+47}{2} for x in the other equation, x+y=14.
-\frac{1}{2}y+\frac{47}{2}=14
Add -\frac{3y}{2} to y.
-\frac{1}{2}y=-\frac{19}{2}
Subtract \frac{47}{2} from both sides of the equation.
y=19
Multiply both sides by -2.
x=-\frac{3}{2}\times 19+\frac{47}{2}
Substitute 19 for y in x=-\frac{3}{2}y+\frac{47}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-57+47}{2}
Multiply -\frac{3}{2} times 19.
x=-5
Add \frac{47}{2} to -\frac{57}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-5,y=19
The system is now solved.
10x+15y=235,x+y=14
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}235\\14\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}10&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}235\\14\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&15\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}235\\14\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&15\\1&1\end{matrix}\right))\left(\begin{matrix}235\\14\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-15}&-\frac{15}{10-15}\\-\frac{1}{10-15}&\frac{10}{10-15}\end{matrix}\right)\left(\begin{matrix}235\\14\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&3\\\frac{1}{5}&-2\end{matrix}\right)\left(\begin{matrix}235\\14\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 235+3\times 14\\\frac{1}{5}\times 235-2\times 14\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\19\end{matrix}\right)
Do the arithmetic.
x=-5,y=19
Extract the matrix elements x and y.
10x+15y=235,x+y=14
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+15y=235,10x+10y=10\times 14
To make 10x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 10.
10x+15y=235,10x+10y=140
Simplify.
10x-10x+15y-10y=235-140
Subtract 10x+10y=140 from 10x+15y=235 by subtracting like terms on each side of the equal sign.
15y-10y=235-140
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
5y=235-140
Add 15y to -10y.
5y=95
Add 235 to -140.
y=19
Divide both sides by 5.
x+19=14
Substitute 19 for y in x+y=14. Because the resulting equation contains only one variable, you can solve for x directly.
x=-5
Subtract 19 from both sides of the equation.
x=-5,y=19
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}