Solve for A, C
A = \frac{2318}{25} = 92\frac{18}{25} = 92.72
C = \frac{497}{5} = 99\frac{2}{5} = 99.4
Share
Copied to clipboard
-5C=-180-317
Consider the second equation. Subtract 317 from both sides.
-5C=-497
Subtract 317 from -180 to get -497.
C=\frac{-497}{-5}
Divide both sides by -5.
C=\frac{497}{5}
Fraction \frac{-497}{-5} can be simplified to \frac{497}{5} by removing the negative sign from both the numerator and the denominator.
10A-8\times \frac{497}{5}=132
Consider the first equation. Insert the known values of variables into the equation.
10A-\frac{3976}{5}=132
Multiply -8 and \frac{497}{5} to get -\frac{3976}{5}.
10A=132+\frac{3976}{5}
Add \frac{3976}{5} to both sides.
10A=\frac{4636}{5}
Add 132 and \frac{3976}{5} to get \frac{4636}{5}.
A=\frac{\frac{4636}{5}}{10}
Divide both sides by 10.
A=\frac{4636}{5\times 10}
Express \frac{\frac{4636}{5}}{10} as a single fraction.
A=\frac{4636}{50}
Multiply 5 and 10 to get 50.
A=\frac{2318}{25}
Reduce the fraction \frac{4636}{50} to lowest terms by extracting and canceling out 2.
A=\frac{2318}{25} C=\frac{497}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}