\left. \begin{array} { l } { 10 + \frac { 5 } { 6 } } \\ { 5 \frac { 1 } { 3 } + 3 \frac { 1 } { 5 } } \\ { 3 \frac { 3 } { 8 } + 3 \frac { 1 } { 5 } } \end{array} \right.
Sort
\frac{263}{40},\frac{128}{15},\frac{65}{6}
Evaluate
\frac{65}{6},\ \frac{128}{15},\ \frac{263}{40}
Share
Copied to clipboard
sort(\frac{60}{6}+\frac{5}{6},\frac{5\times 3+1}{3}+\frac{3\times 5+1}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Convert 10 to fraction \frac{60}{6}.
sort(\frac{60+5}{6},\frac{5\times 3+1}{3}+\frac{3\times 5+1}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Since \frac{60}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
sort(\frac{65}{6},\frac{5\times 3+1}{3}+\frac{3\times 5+1}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Add 60 and 5 to get 65.
sort(\frac{65}{6},\frac{15+1}{3}+\frac{3\times 5+1}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Multiply 5 and 3 to get 15.
sort(\frac{65}{6},\frac{16}{3}+\frac{3\times 5+1}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Add 15 and 1 to get 16.
sort(\frac{65}{6},\frac{16}{3}+\frac{15+1}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Multiply 3 and 5 to get 15.
sort(\frac{65}{6},\frac{16}{3}+\frac{16}{5},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Add 15 and 1 to get 16.
sort(\frac{65}{6},\frac{80}{15}+\frac{48}{15},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Least common multiple of 3 and 5 is 15. Convert \frac{16}{3} and \frac{16}{5} to fractions with denominator 15.
sort(\frac{65}{6},\frac{80+48}{15},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Since \frac{80}{15} and \frac{48}{15} have the same denominator, add them by adding their numerators.
sort(\frac{65}{6},\frac{128}{15},\frac{3\times 8+3}{8}+\frac{3\times 5+1}{5})
Add 80 and 48 to get 128.
sort(\frac{65}{6},\frac{128}{15},\frac{24+3}{8}+\frac{3\times 5+1}{5})
Multiply 3 and 8 to get 24.
sort(\frac{65}{6},\frac{128}{15},\frac{27}{8}+\frac{3\times 5+1}{5})
Add 24 and 3 to get 27.
sort(\frac{65}{6},\frac{128}{15},\frac{27}{8}+\frac{15+1}{5})
Multiply 3 and 5 to get 15.
sort(\frac{65}{6},\frac{128}{15},\frac{27}{8}+\frac{16}{5})
Add 15 and 1 to get 16.
sort(\frac{65}{6},\frac{128}{15},\frac{135}{40}+\frac{128}{40})
Least common multiple of 8 and 5 is 40. Convert \frac{27}{8} and \frac{16}{5} to fractions with denominator 40.
sort(\frac{65}{6},\frac{128}{15},\frac{135+128}{40})
Since \frac{135}{40} and \frac{128}{40} have the same denominator, add them by adding their numerators.
sort(\frac{65}{6},\frac{128}{15},\frac{263}{40})
Add 135 and 128 to get 263.
\frac{1300}{120},\frac{1024}{120},\frac{789}{120}
Least common denominator of the numbers in the list \frac{65}{6},\frac{128}{15},\frac{263}{40} is 120. Convert numbers in the list to fractions with denominator 120.
\frac{1300}{120}
To sort the list, start from a single element \frac{1300}{120}.
\frac{1024}{120},\frac{1300}{120}
Insert \frac{1024}{120} to the appropriate location in the new list.
\frac{789}{120},\frac{1024}{120},\frac{1300}{120}
Insert \frac{789}{120} to the appropriate location in the new list.
\frac{263}{40},\frac{128}{15},\frac{65}{6}
Replace the obtained fractions with the initial values.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}