Solve for x, y
x = \frac{839}{440} = 1\frac{399}{440} \approx 1.906818182
y=-1.755
Graph
Share
Copied to clipboard
220x+60y+1.8=316,220x+100y+108=352
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
220x+60y+1.8=316
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
220x+60y=314.2
Subtract 1.8 from both sides of the equation.
220x=-60y+314.2
Subtract 60y from both sides of the equation.
x=\frac{1}{220}\left(-60y+314.2\right)
Divide both sides by 220.
x=-\frac{3}{11}y+\frac{1571}{1100}
Multiply \frac{1}{220} times -60y+314.2.
220\left(-\frac{3}{11}y+\frac{1571}{1100}\right)+100y+108=352
Substitute -\frac{3y}{11}+\frac{1571}{1100} for x in the other equation, 220x+100y+108=352.
-60y+\frac{1571}{5}+100y+108=352
Multiply 220 times -\frac{3y}{11}+\frac{1571}{1100}.
40y+\frac{1571}{5}+108=352
Add -60y to 100y.
40y+\frac{2111}{5}=352
Add \frac{1571}{5} to 108.
40y=-\frac{351}{5}
Subtract \frac{2111}{5} from both sides of the equation.
y=-\frac{351}{200}
Divide both sides by 40.
x=-\frac{3}{11}\left(-\frac{351}{200}\right)+\frac{1571}{1100}
Substitute -\frac{351}{200} for y in x=-\frac{3}{11}y+\frac{1571}{1100}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1053}{2200}+\frac{1571}{1100}
Multiply -\frac{3}{11} times -\frac{351}{200} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{839}{440}
Add \frac{1571}{1100} to \frac{1053}{2200} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{839}{440},y=-\frac{351}{200}
The system is now solved.
220x+60y+1.8=316,220x+100y+108=352
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}220&60\\220&100\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}314.2\\244\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}220&60\\220&100\end{matrix}\right))\left(\begin{matrix}220&60\\220&100\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}220&60\\220&100\end{matrix}\right))\left(\begin{matrix}314.2\\244\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}220&60\\220&100\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}220&60\\220&100\end{matrix}\right))\left(\begin{matrix}314.2\\244\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}220&60\\220&100\end{matrix}\right))\left(\begin{matrix}314.2\\244\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{220\times 100-60\times 220}&-\frac{60}{220\times 100-60\times 220}\\-\frac{220}{220\times 100-60\times 220}&\frac{220}{220\times 100-60\times 220}\end{matrix}\right)\left(\begin{matrix}314.2\\244\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{88}&-\frac{3}{440}\\-\frac{1}{40}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}314.2\\244\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{88}\times 314.2-\frac{3}{440}\times 244\\-\frac{1}{40}\times 314.2+\frac{1}{40}\times 244\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{839}{440}\\-\frac{351}{200}\end{matrix}\right)
Do the arithmetic.
x=\frac{839}{440},y=-\frac{351}{200}
Extract the matrix elements x and y.
220x+60y+1.8=316,220x+100y+108=352
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
220x-220x+60y-100y+1.8-108=316-352
Subtract 220x+100y+108=352 from 220x+60y+1.8=316 by subtracting like terms on each side of the equal sign.
60y-100y+1.8-108=316-352
Add 220x to -220x. Terms 220x and -220x cancel out, leaving an equation with only one variable that can be solved.
-40y+1.8-108=316-352
Add 60y to -100y.
-40y-106.2=316-352
Add 1.8 to -108.
-40y-106.2=-36
Add 316 to -352.
-40y=70.2
Add 106.2 to both sides of the equation.
y=-\frac{351}{200}
Divide both sides by -40.
220x+100\left(-\frac{351}{200}\right)+108=352
Substitute -\frac{351}{200} for y in 220x+100y+108=352. Because the resulting equation contains only one variable, you can solve for x directly.
220x-\frac{351}{2}+108=352
Multiply 100 times -\frac{351}{200}.
220x-\frac{135}{2}=352
Add -\frac{351}{2} to 108.
220x=\frac{839}{2}
Add \frac{135}{2} to both sides of the equation.
x=\frac{839}{440}
Divide both sides by 220.
x=\frac{839}{440},y=-\frac{351}{200}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}